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Standard nonlinear ultrasonic methods such as wave frequency mixing or resonance based

measurements allow one to extract average, bulk variations of modulus and attenuation versus strain

level. In contrast, dynamic acousto-elasticity (DAE) provides the elastic behavior over the entire

dynamic cycle including hysteresis and memory effects, detailing the full nonlinear behavior under

tension and compression. In this work, we address experimental difficulties and apply new processing

methods, illustrating them with a Berea sandstone sample. A projection procedure is used to analyze

the complex nonlinear signatures and extract the harmonic content. Amplitude dependences of the

harmonic content are compared with existing models. We show that a combination of classical and

hysteretic nonlinear models capture most of the observed phenomena. Some differences between

existing models and experimental data are highlighted, however. A progressive decrease of the

power-law amplitude dependence is found for harmonics larger than the second and for strains larger

than 10�6. This observation is related to the phenomenon of acoustic conditioning that brings the

material to a metastable state for each new excitation amplitude. Analysis of the steady-state regime

provides additional information regarding acoustic conditioning, i.e., a progressive decrease of the

amplitude of odd harmonics during excitation time with a log(t)-dependence. This observation

confirms that the harmonic content is affected by the conditioning. Experimental challenges addressed

include the fact that the compressional mode used for DAE can be affected by bending/torsion modes:

their influence is evaluated, and guidances are given to minimize effects. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4816395]

I. INTRODUCTION

Probing elastic nonlinearity of materials has broad appli-

cation including medical imaging, civil engineering, and

geophysics, since elastic nonlinearity is a sensitive measure

of mechanical damage in solids at many scales. In compari-

son, standard nonlinear ultrasonic methods such as frequency

mixing or resonance based measurements provide the means

to extract average variations of modulus and attenuation ver-

sus strain level.

In standard (i.e., static) acousto-elasticity, ultrasonic or

acoustic waves propagate through the specimen, while it is

statically stressed at different amplitudes (uniaxial or hydro-

static stress).1 For isotropic materials, the speed of sound

change with stress levels allows one to extract nonlinear

parameters A, B, C, the third order elastic constants.2 The

applied stress is usually only compressive for practical rea-

sons, and static strain levels have to be relatively high to be

measured properly (>10�4).

Dynamic acousto-elasticity (DAE) employs a low fre-

quency wave source instead of a static device to stress the rod

shaped sample at its fundamental compressional mode. Strain

levels are therefore smaller (10�8 � 10�5), and the sample is

tested under both compression and tension allowing one to

obtain the elastic response over a complete dynamic stress

cycle. Previous DAE results3–5 have shown very complex

elastically nonlinear signatures, in particular, hysteretic behav-

iors and strong effects of material “conditioning.”6,7

DAE falls under the broad category of “pump-probe”

methods that have existed in nonlinear acoustics from at least

the 1950s.8–11 It involves application of two dynamic fields,

one to perturb the material elasticity (the “pump”) and one to

measure the induced elastic changes (the “probe”). DAE

uses a low frequency pump (LF field), and the probe is high

frequency pulse (HF field).

Our intent in this article is to explore and characterize

DAE experimental issues as well as develop new methods

for characterizing the probe signal output. First, we compare

DAE experimental results with existing models, using a pro-

jection procedure to analyze both LF and HF waves. In com-

parison with previous studies,3–5 this method is particularly

valuable for the HF field because it does not require cumber-

some signal processing (filtering, interpolation) to extract in-

formation. We therefore minimize the influence of signal

processing on results. Differences between experimental

data and existing models are highlighted, and the consistency

of both fields is evaluated to check the measurement reliabil-

ity. This procedure can be extended to any arbitrary pump-

probe configuration. Second, DAE uses the assumption of a

steady-state for the LF field. We assess the LF steady-state
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regime in this study and show that it takes much longer to

reach than may be obvious. DAE also makes the assumption

of a pure compressional mode for the LF field. Influence of

potential adjacent bending/torsional modes is evaluated, and

some recommendations are given to minimize such effects.

Finally, we evaluate the influence of the LF harmonic con-

tent on DAE results.

The experimental method and the projection procedure

used to analyze experimental data are presented in Sec. II. A

theoretical description of the system is provided in the ap-

pendix. The projection procedure is applied in Sec. III A to

analyze the harmonic content of both low frequency and

high frequency fields and as well as the amplitude depend-

ence. The resonant low frequency field is then analyzed in

detail in Sec. III B. The same projection procedure used in

Sec. III A allows one to analyze the steady-state regime of

the harmonic content. Further, the modal shape of the com-

pressional mode is analyzed, and the influence of potential

adjacent torsion/bending modes is discussed.

II. MATERIALS AND METHODS

A. Experimental system

1. DAE setup

The sample shown in Fig. 1(a) and used to illustrate the

developments described here is a cylinder of room-dry Berea

sandstone, length L¼ 15 cm and diameter d¼ 2.54 cm, that

stands upright on a low frequency compressional source, a

piezoceramic disk. Berea is a very well known and well

characterized material in geophysical studies (e.g., (Ref. 6)).

A high frequency compressional source and associated

receiver straddle the sample at height h¼ 2 cm above the

base. A light accelerometer, placed on the top of the sample

(free surface), monitors the low frequency wave field. The

essential idea is to have a high frequency broadcast, from

ultrasonic source to ultrasonic receiver, to probe the elastic

state that is modulated in the sample by the low frequency

source.

The low frequency source has diameter greater than d
and creates a strain field �xðx; tÞ in the sample that is primar-

ily a function of x, the vertical dimension. Typically, the low

frequency fLF is the frequency of the lowest compressional

resonant mode of the cylinder, fLF ¼ c=ð4LÞ with fixed-free

boundary conditions (wavelength k ¼ 4L), and where c is

the nominal compressional sound speed in the sample

(roughly 2400 m/s, that is fLF ’ 4000 Hz). The strain field is

sampled at x¼ h by the high frequency broadcast that crosses

the sample in time, tUS, of order d=c ’ 10 ls. During the

high frequency wave travel time the low frequency strain

field changes very little, tUS=TLF ¼ d=ð4LÞ ¼ 2:54=60

’ 0:04, with TLF ¼ 1=fLF. This first condition is required

to assume an acousto-elastic effect (tUS � TLF). Further,

the width of US beam is approximately the diameter of the

US transducer (dUS ¼ 6 mm). Thus, we can assume that

the strain established in the sample by the low frequency

source is constant spatially over the US beam width

(dUS=k ¼ 0:6=60 ¼ 0:01).

Assuming fixed-free boundary conditions, the strain is

maximum at x¼ 0 and can be evaluated from the acceleration

measured at the top of the sample using �xð0; tÞ ¼ �€uxðL; tÞ=
ð8p Lf 2

LFÞ. In the following, we will assume that the strain at

x¼ h is roughly equal to the strain at the base, i.e.,

�xðh; tÞ ’ �xð0; tÞ. Further, this formula is only valid if most

of the acceleration content is at the fundamental frequency

fLF. These choices will be discussed later in Sec. III B 2.

Finally, it is important to note that ultrasound pulses are

launched in the sample near the fixed boundary because the

maximum strain amplitude is expected at this location.

The high frequency source at 1 MHz is a pulse of dura-

tion 3 ls, i.e., three high frequency periods. The low fre-

quency broadcast/detection and the high frequency

FIG. 1. Experimental setup. (a) DAE setup. The low frequency source resonates the sample on its first compressional mode (’4000 Hz), with fixed-free

boundary conditions. Ultrasound pulses at 1 MHz are launched in the sample simultaneously to probe the sample at a given strain level imposed by the low fre-

quency field. An accelerometer placed on the top of the sample allows to measure the low frequency field, whereas a second ultrasonic transducer detects the

high frequency pulses. (b) LF field characterization setup (results in Sec. III B 2). Either a differential laser vibrometer or a standard laser vibrometer are used

to measure axial (x-direction) or radial (y-direction) particle velocities, respectively, along the sample length, while the sample resonates on its first compres-

sional mode.
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broadcast/detection are controlled by a central clock. Both

detections are sampled at 50 MHz.

2. LF field characterization setup

As described in Fig. 1(b), a laser vibrometer can also be

deployed to measure the vector velocity field of the sample

sides during activation of the LF source at the frequency of

the first compressional mode. Either a differential laser

vibrometer or a standard laser vibrometer are used to measure

axial (x-direction) or radial (y-direction) particle velocities,

respectively, along the sample length. The spatial structure of

the LF field and the influence of potential adjacent torsion/

bending modes can be then evaluated from this measurement.

Also, the spatial structure of harmonics within the bar can be

compared with theoretical predictions (see Sec. III B 2).

B. Measurement protocol

The DAE measurement protocol involves the following

ingredients. At time t ¼ t0 ¼ 0, the high frequency source is

turned on, sending a sequence of 1 MHz pulses at times tj.
The time between successive pulses, DT, is chosen such that

the coda signal received in response to the jth pulse decays to

zero before sending the (j þ 1)th pulse, DT ’ 0:1 ms. From

the complete ultrasonic signal received by the high fre-

quency detector, one extracts the direct wave, i.e., the 3 first

periods of each received pulse sðt� tjÞ.
The low frequency source with amplitude A is only

turned on after 5 ms, allowing several ultrasonic pulses to

propagate within the sample without being disturbed by the

low frequency field. The signal at the sample top is recorded

at times ti. The signal measured at ti, an acceleration, is

related to the displacement field at the sample top and to the

nominal strain field �xðtiÞ in the sample, as described earlier.

For Berea sandstone, the steady-state is reached after

roughly 100 ms of LF vibration (Fig. 2(a)). Each pulse sðt� tjÞ
propagating during the steady-state can be compared with the

pulses that cross the sample before activation of the low fre-

quency source. The spacing DT is chosen to be incommensu-

rate with TLF so that over time the broadcasts at the set of

times ftjg sample all phases of the �xðtiÞ strain field.

The first step in analysis of the sðt� tjÞ is to compare the

first reference pulse sðt� t0Þ by employing cross-correlation

Cðsj; tjÞ ¼
ð1

0

sðt� t0Þsðtþ s� tjÞdt (1)

to determine sðtjÞ, the shift in the time of flight of the high

frequency pulse as it crosses the sample at time tj.
12,13 The

shift sðtjÞ is refined by interpolating the peak of the cross-

correlation function with a second order polynomial function

to obtain subsample time resolution.14 Three points are con-

sidered for this interpolation: the maximum of the cross corre-

lation function and the two adjacent points. Assuming that

dynamic variations in the sample diameter (i.e., the probe

path) due to Poisson effect are negligible,15 time of flight mod-

ulations can be converted into a relative velocity change using

Dc

c
ðtjÞ ¼ �

sðtjÞ
t0
US

; (2)

where t0
US is the time of flight of the reference pulse. Finally,

the change in the relative sound speed is associated with the

strain field at x¼ h at the moment of the high frequency

FIG. 2. Examples of projection procedure. Low frequency acceleration (a) and high frequency velocity change (b) as a function of time for Berea sandstone in

solid blue line. Red curves are the result of the projection procedure [using N¼ 15 in (a) and N¼ 14 in (b)]. Acceleration of 300 m/s2 corresponds roughly to a

4 � 10�6-strain (see formula Sec. II A). (c) and (d) are zooms in time of (a) and (b), respectively. The low frequency acceleration is sampled at 50MHz, and

thus, the projection procedure can therefore be applied to a small number of periods of the signal as necessary [for example, 6 periods as seen in (c)]. On the

other hand, the velocity change signal is a down sampled signal at the pulse frequency rate (10 kHz here). A much longer signal is therefore needed to apply

the projection procedure successfully [from 200 to 300 ms here as seen in (b)].
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broadcast, i.e., Dc
c ðtjÞ () �xðh; tjÞ where the latter term

�xðh; tjÞ is a down-sampled version of �xðh; tiÞ.
Each DAE signature presented in Sec. III is the average

of ten acquisitions, and we wait 30 s between each pump ex-

citation. This waiting time is chosen long enough to ensure

that most of the relaxation has taken place (slow dynamics7)

but short enough to perform measurements in stable environ-

mental conditions (the slow dynamics may continue for

minutes or hours after the sample is perturbed; however,

most for the relaxation takes place very rapidly, within the

first 10-20 s).

C. Signal analysis: Projection procedure

The dynamic acousto-elastic experiment allows one to

obtain two temporal signals, i.e., the low frequency accelera-

tion €uxðtiÞ, and the relative change in ultrasonic speed of

sound Dc
c ðtjÞ. The harmonic content of the former could be

analyzed with a standard Fourier transform, whereas the lat-

ter one is a down sampled signal (at the frequency of the US

pulse repetition rate, cf Fig. 2(d)) that has to be analyzed

with a different method. The method used here called the

projection procedure will be applied to both high and low

frequency signals for convenience. It consists in projecting

the signals onto a series of orthonormal functions at given

frequencies

SnðtkÞ ¼ qn sinðnxtkÞ
CnðtkÞ ¼ rn cosðnxtkÞ with n ¼ 1; 2; :::;N; (3)

where x is the low frequency pulsation at which the sample

is driven and N being chosen depending on the harmonic

content of the signal. Time tk can denote ti or tj, depending

on the studied function. The low frequency acceleration is

sampled at 50 MHz ðtiþ1 � ti ¼ 20 nsÞ, and thus, the projec-

tion procedure can be applied to a small number of periods

of the signal as necessary. On the other hand, the velocity

change signal is a down sampled signal at the pulse fre-

quency rate (10 kHz here, tjþ1 � tj ¼ DT ’ 0:1 ms). A much

longer signal is therefore needed to apply the projection pro-

cedure successfully. Amplitudes qn and rn have to be chosen

such that these functions are orthonormal

hSmjSpi ¼ dm;p

hCmjCpi ¼ dm;p

hSmjCpi ¼ 0;

(4)

where dm;p is the Kronecker symbol (dm;p ¼ 1 if m¼ p, 0

otherwise) and hji denotes the scalar product. Practically, qn

and rn are found using the numerical Gram-Schmidt process

(see appendix C).

If the studied signal is denoted f ðtkÞ and the result of the

projection is denoted fpðtkÞ, then fpðtkÞ is given by

fpðtkÞ ¼
XN

n¼1

anSnðtkÞ þ
XN

n¼1

bnCnðtkÞ; (5)

where coefficients an and bn are

an ¼ hSnjf i
bn ¼ hCnjf i:

(6)

Coefficients an and bn tell how much of the nth harmonic

is present in the signal. Assuming that the response at

the fundamental frequency is a sine function, the quantity

A1 ¼ a1q1 tells us how much of the signal remains in phase

with the fundamental, whereas the amplitude B1 ¼ b1r1 tells

us how much is in quadrature. Practically, the magnitude

Rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

n þ B2
n

p
can be used to quantify the harmonic con-

tent. In the following, quantity Rn will be denoted unx for the

low frequency signal (acceleration is converted into dis-

placement after projection) and Dc
c jnx for the high frequency

signal. Both quantities will be plotted as a function of u1x

which corresponds to the amplitude displacement of the driv-

ing fundamental frequency.

In case of a purely linear system, the LF signal should

only contains the fundamental ux, whereas the high fre-

quency signal Dc
c should be 0 (no change in the speed of

sound across the sample). Further, in the case of a purely

quadratic elastic nonlinearity (appendix A 1), the low fre-

quency signal should contain ux and u2x (fundamental and

second harmonic, respectively), while the HF signal should

only contain Dc
c jx.

III. EXPERIMENTAL RESULTS

A. Consistency of LF and HF wave fields, parameter
scaling observations, and comparison with existing
models

1. Harmonic content

a. Decomposition. An example of projection result is

displayed in Fig. 2 for both low and high frequency fields

as a function of time, for a dry Berea sandstone sample. LF

acceleration and HF velocity change are displayed as a

function of time in Figs. 2(a) and 2(b), respectively. Red

curves are the result of the projection procedure. Figs. 2(c)

and 2(d) are zooms in time of Figs. 2(a) and 2(b), respec-

tively. The low frequency acceleration is sampled at

50MHz, and thus, the projection procedure can therefore be

applied to a small number of periods of the signal as neces-

sary (for example, 6 periods as seen in Fig. 2(c)). On the

other hand, the velocity change signal is a down sampled

signal at the pulse frequency rate (10 kHz here). A much

longer signal is therefore needed to apply the projection

procedure successfully (from 200 to 300 ms here as seen in

Fig. 2(b)). Results presented in this section correspond to

projections that are applied over the complete steady-state,

i.e., between 0.1 and 0.3 s in Fig. 2.

The projection is first applied for different values of N at

one high strain amplitude (8 � 10–6), where the response is

highly elastically nonlinear. This allows one to decide how

many functions are needed to track the harmonic content.

The root mean square error that quantitatively evaluates the

difference between experimental data and the projection

result is displayed in Fig. 3 for LF and HF fields as a function

of N. For the LF field in Fig. 3(a), the error remains constant

and small for N � 15. For the HF field, the error reaches
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a minimum for N¼ 6 and slightly increases for higher N. A

plateau is found for 8 � N � 15. The error then increases for

N > 15. This increase is due to the fact that the signal is not

long enough in time to track the highest harmonics. For both

curves, we observe a step-like behavior, because odd har-

monics dominate over even ones. Based on this result, we

decide to use N¼ 15 and N¼ 14 for LF and HF fields to

track the signal content until the 15th harmonic. We observe

good agreement in Fig. 2 between experimental data and

projection results. Projection results of Dc
c for 26 increasing

low frequency excitation amplitudes ranging from 3 � 10�8

to 8 � 10�6 in strain are shown in Fig. 4. We also check that

the projection result fits experimental data.

Amplitudes Dc
c jnx and unx extracted from the projection

procedure allow us in a first approach to compare the har-

monics in both the LF and HF fields without taking into

account the complex signatures of Fig. 4, in particular, hyste-

retic behaviors.

b. Second harmonic. In Fig. 5, the amplitudes Dc
c jx and

u2x are shown as a function of the fundamental driving dis-

placement u1x on a log-log scale. We note that Dc
c jx / ux

for the entire displacement amplitude range and u2x / u2
x

for displacement amplitudes higher than the noise level

(between 10�13 and 10�12 at 2x for the lowest amplitudes of

excitation). These two scalings are predicted by the quadratic

nonlinear elastic model described in appendix A 1, assuming

an isotropic sample.

Components in phase and 90� out of phase with the fun-

damental displacement are also displayed in Fig. 5. We note

that the LF 2x-signal measured at the free end of the bar is

90� out of phase with the fundamental, when it exceeds the

noise level (Fig. 5(b)). This result is also predicted by the

quadratic nonlinear elastic model (appendix A 2).

c. Third and higher harmonics. Fig. 6 shows the same

projection results as Fig. 5 up to the seventh harmonic (only

FIG. 3. Projection quality. The root

mean square error quantitatively evalu-

ates the difference found between the

projection result and experimental data

at high strain amplitude (8 � 10�6),

when the response is highly nonlinear.

(a) Root mean square error found for

the LF acceleration as a function of N
(Eq. (3)). The error remains constant

and small for N � 15. We also observe

a step-like behavior, because odd har-

monics dominate over even ones.

(b) Same curve for the HF relative

velocity change. The curve reaches a

minimum for N ¼ 6.

FIG. 4. High frequency velocity change Dc
c as a function of low frequency strain �x in Berea sandstone for 26 increasing low frequency excitations ranging

from 3 � 10�8 to 8 � 10�6 in strain. Some amplitudes are removed at several strain levels for clarity. Progressive zooms of the low amplitude signals are

shown in (b) and (c), respectively. Blue triangles and red squares correspond to increasing and decreasing strains, respectively. The black line shows the result

of the projection procedure for each curve.
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7 harmonics out of 15 are displayed for figure clarity).

Amplitude dependences are complex for harmonics higher

than the second one. We note that Dc
c j2x / u2

x for displace-

ments below 100 nm (strain < 10�6), while u3x / u2
x for the

LF field. A second primary observation is the dominance of

odd harmonics over even ones, i.e., u3x > u5x > u7x >
u4x > u6x for the LF field. The same observation is made for

the HF field, which confirms the consistency between LF and

HF fields. Highest harmonics (n > 3) emerge from noise level

for displacements higher than 50 nm, i.e., roughly 5 � 10�7 in

strain for both fields.

The classical nonlinear theory extended to fourth-order

elastic constants predicts the square dependence of Dc
c j2x.

This same theory would predict a cubic dependence for u3x,

while the dependence found is quadratic. This latter scaling

is predicted by hysteretic models16 (appendix B).

In Figs. 7(a)–7(c), amplitude dependences of odd har-

monics for the LF field are displayed (same as Fig. 6(b)). A

quadratic dependence with fundamental amplitude is approx-

imately found for u3x and u7x. A higher order power-law

dependence—between 4 and 5—is found for u5x. In phase

and 90� out of phase components with the fundamental are

also displayed. The 90� out of phase component dominates

for u7x whereas in phase component is dominating for u5x.

No clear trend can be determined for u3x since each compo-

nent alternatively dominates from one excitation amplitude

to another.

Dependences of odd harmonics can be compared with

quadratic hysteretic nonlinearity described in appendix B. A

quadratic dependence of all odd harmonics with fundamental

amplitude is expected with this model, as found for third and

seventh harmonics. Further, odd harmonics are expected to

be 90� out of phase with the fundamental according to this

theoretical description. This is only the case for the seventh

harmonic. In Fig. 7(d), the LF waveform experimentally

obtained for the highest strain amplitude is compared with the

triangular waveform expected with hysteretic nonlinearity16

and with a linear sine function. We observe a “localized” non-

linear distortion when maximum strain is reached, as opposed

to the theoretical predicted triangular waveform. This

FIG. 5. Amplitude dependences obtained

in Berea sandstone for both HF

(relative velocity change in (a)) and LF

(displacement u in (b)) fields that can

be compared with quadratic nonlinear-

ity described in appendix A 1. The

complete signal (black), the in phase

(blue), and 90� out of phase (red) com-

ponents are shown. Respective scalings

of 1 and 2 correctly fit the quadratic

nonlinear model. The 90� out of phase

portion is dominant for the LF field, as

found theoretically in appendix A 2.

FIG. 6. Same as Fig. 5 for the first seven harmonics. Amplitude dependences obtained in Berea for both high frequency (relative velocity change in (a)) and

low frequency (displacement u in (b)) fields. Analysis of amplitude dependences is complex for harmonics higher than for the second one. Most of higher har-

monics emerge for displacements higher than 50 nm, i.e., roughly 5 � 10�7 in strain. If the second harmonic fits correctly the nonlinear quadratic model, higher

harmonics are more in accordance with hysterectic models since odd harmonics have much higher amplitudes than even ones. Also, scaling of the second

harmonic is constant over the entire displacement range, whereas scalings of higher harmonics tend to decrease for the highest amplitudes. This last feature is

particularly visible for the HF field (a).
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difference explains why harmonics are not systematically

found 90� out of phase with the fundamental. Further at zero

strain (t ’ 0.24015 s) in Fig. 7(d), the experimental and sine

functions match well, bearing out that the nonlinear contribu-

tion is mainly present at extreme strains.

d. Modeling of the harmonic content. To describe these

results with existing models, one can use the following

1D-Eq. 16

M ¼ M0ð1þ b�þ d�2 þ :::þ að�m þ signð _�Þ�ÞÞ; (7)

where M, M0, �, b, d are, respectively, the generic nonlinear

modulus, the linear modulus independent of the strain wave

amplitude, the strain amplitude, the nonlinear quadratic term

and the nonlinear cubic parameter. b and d are from the clas-

sical nonlinear theory (appendix A). The last term of the

equation is related to the quadratic hysteretic nonlinear

theory (appendix B) and involves a, _�, and �m: the nonlinear

hysteretic parameter, the strain rate and the maximum strain

excursion experienced by the material, respectively. The

maximum strain excursion in our case is the amplitude of the

low frequency resonance. Experimental results suggest that

the quadratic nonlinear theory can explain the amplitude de-

pendence of the second harmonic (n¼ 2). On the other hand,

dominance of odd harmonics for strain higher than 5 � 10�7

suggests the hysteretic model involving only odd harmonics

is more appropriate. A combination of both classical and

hysteretic models with specific strain thresholds could be

then a first appropriate start to model the experiment.17 The

behavior observed for the amplitude dependence of the third

harmonic also confirms this combination. Indeed, the third

harmonic (n¼ 3) of the high frequency field seems to be pre-

dicted by the classical theory for strain roughly below 10�6

(scaling of 2 in Fig. 6(a)), whereas the low frequency field

could be predicted by the hysteretic model in Fig. 6(b)

(scaling of 2). This transition from classical to hysteretic behav-

ior is coherent with previous studies, e.g., (Refs. 3 and 18).

It is worth noting here that the LF field probes the entire

sample (including the bonding of the sample on the LF

source), whereas the high frequency observation results from

the interaction between the pump and the probe, therefore,

probing the sample locally. The consistency of both fields is

made under the assumption of a homogenous material, a lin-

ear LF source and a bonding that does not produce signifi-

cant nonlinear effects. In particular, we have observed more

inconsistency for the LF field when bonding/debonding the

sample: in that sense HF field observations are therefore

more reliable.

One last observation concerns the highest amplitude exci-

tations. We observe in Fig. 6 that the scaling found for the sec-

ond harmonic is constant over the entire displacement range,

whereas scalings of higher harmonics tend to decrease as the

driving amplitude increases. This is particularly visible for the

high frequency field in Fig. 6(a). In particular, the curvature in

the diagram Dc
c vs strain (Fig. 4) related to the third harmonic

FIG. 7. Odd harmonics, LF field. (a)-(c) Amplitude dependences obtained in Berea sandstone for odd harmonics (third, fifth, and seventh, respectively) of LF

field that can be compared with hysteretic nonlinearity described in appendix B. Expected quadratic dependence with fundamental amplitude is approximately

found for the third and seventh harmonics. Higher order dependence is found for the fifth. In phase and out of phase components with the fundamental are also

displayed. Odd harmonics are expected to be 90� out of phase with the fundamental for hysteretic nonlinearity. It is only the case for the seventh harmonic.

(d) The LF waveform experimentally obtained for the highest strain amplitude is compared with a linear sine function and the triangular shape of hysteretic

nonlinearity.16 We observe a very localized in time nonlinearity (e.g., the dip in strain at t ’ 0.2401 s and t ’ 0.24022 s) when strain reaches an extremum, as

opposed to the theoretical triangular waveform. This difference explains why harmonics are not found 90� out of phase with the fundamental. At zero strain

(t ’ 0.24015 s), the experimental and sine functions match well, meaning that the nonlinear contribution is almost only present at extreme strains.
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(term d) clearly decreases for increasing excitation amplitudes.

This observation has already been reported experimentally in

Lavoux Limestone for the third harmonic of the HF signal

(cubic nonlinearity), but has not been observed for higher har-

monics previously.3 It was also observed numerically that the

wave propagation into a nonlinear hysteretic medium leads to a

“saturation” of the third harmonic (Fig. 15 of Ref. 16). It is re-

markable that for both fields the second harmonic is not

affected by this change in amplitude dependence. As far as the

third harmonic is concerned, it means that the cubic

elastic nonlinear model is not suitable for strain higher than 2

or 3 � 10�6 in Berea sandstone (in agreement with.18) For the

HF field which corresponds to the probe signal (Fig. 6(a)), we

believe that the change in amplitude dependence is due to the

acoustic conditioning, as previously suggested in Refs. 3 and

18. This reversible acoustically induced conditioning brings the

material to a new metastable state for each new excitation am-

plitude, which affects the scalings for all the harmonic content

with the exception of the second one (see also discussion

related to Figs. 9 and 11). Amplitude dependent attenuation

coming from the hysteretic nonlinearity could also be an effect

for the harmonic content of the LF resonance (Fig. 6(b)), as

observed numerically in the configuration of wave propaga-

tion.16 Therefore, both acoustic conditioning and nonlinear

attenuation are responsible for scaling changes of the LF field.

To date, we do not know which mechanism is dominant.

The theory presented in appendix B is based on a uniform
distribution of elementary hysteretic elements. An approach
based on Preisach-Mayergoyz description (PM space) using a
non uniform distribution could help in describing the har-
monic content.19,22,33 The distribution would consist in less
hysterons (elementary hysteretic units) at higher strains to
reach a saturation of harmonics (Fig. 12.3 of Ref. 19, Type G
distribution). However, we note that this approach would
not properly describe the observation made in Secs. III A 2
and III B 1 (Figs. 9 and 11). Table I aims at summarizing the
ability of the main different models to describe observations
made in DAE. In addition to the harmonic content, observa-
tions made in Secs. III A 2 and III B 1 are also present in the
table (see discussion in the respective sections).

2. Offset and Dc
c -intercept

a. Observations. DAE allows one to distinguish two

features that standard nonlinear methods (e.g., resonance

based measurements) cannot discriminate. In Fig. 4 (also in

Fig. 2(b)), we first observe an average decrease in the rela-

tive velocity change (“offset”), meaning that Dc
c j0x decreases

when strain amplitude increases. Simultaneously, the relative

velocity change is not zero when strain is zero: Dc
c -intercept

(or Dc
c j�¼0) also decreases with increasing strain amplitude.

These two observations are concomitant and their quantity is

almost identical. From Eq. (7), if we assume a linear

TABLE I. Ability of different models to describe observations made with DAE experiments. We note that quadratic and cubic elastic nonlinear models, as

well as the soft-ratchet model24 in its current form do not account for nonlinear attenuation observed experimentally.13,15 We also note that some other models

exist, taking into account dispersion phenomenon (not measured in this experiment)25–28 or those based on contact mechanics.17,29

Observations!
Models #

Slope in

diagram
Dc
c vs �15

Curvature

(Fig. 9(a))

Hysteresis

(Fig. 9(b)) Offset Dc
c j0x

� � Dc
c -intercept

Dc
c j�¼0

� �
Dominance of

odd harmonics

(Fig. 6)

Scaling

changea (Fig. 6)

Decrease in

odd harm

during

steady-state

(Fig. 11)

Quadratic16,20 yes no no no no no no no

Cubic16,21 no yes no
yes, partly

(Eq. (8))
no yes no no

Uniform

PM space16 no no yes
yes, but

overestimation

of the hysteresis

(see Fig. 9(b))

yes yesb no

Non uniform

PM space22 yesc yesc yes yes yes no

Uniform

PM space

w/elastic and

rigid states23

no no yes yes yes yes yesb ?

Soft-ratched24 no no yes yes yes

probably, if the

model is extended

to the harmonic

frequencies

?

Note: The “yes” are emphasized in bold type to facilitate the reading of the table.
aNonlinear attenuation due to the cascade of harmonic generation excluded.
bScaling change coming from NL attenuation due to hysteresis.16

cNon uniform distribution of non hysteretic units located on the diagonal of the PM space can lead to a quadratic and/or cubic elastic nonlinearity.
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excitation � ¼ �m sinðxtÞ, the offset is calculated taking the

average velocity over one period

Dc

c

����
0x

¼ 1

2

DM

M

����
0x

¼ d�2
m

4
þ a�m

2
; (8)

while the Dc
c -intercept is found replacing � by zero in Eq. (7)

Dc

c

����
�¼0

¼ 1

2

DM

M

����
�¼0

¼ a�m

2
: (9)

The only difference between both features is the cubic

nonlinearity containing d, responsible for the curvature in

Fig. 4. At low strain excitation when the curvature in Figs.

4(b) and 4(c) is strong (high and constant d value), the offset

is larger than the Dc
c -intercept, i.e., Dc

c j0x >
Dc
c j�¼0. For high

strain amplitude in Fig. 4(a) when the curvature vanishes,

both values are similar, Dc
c j0x ’ Dc

c j�¼0. The change in curva-

ture can be seen as a decrease in d (d! 0), which means

that the cubic elastic nonlinear model is not suitable for

strain higher that 2 or 3 � 10�6.

For strain as high as 10�5, the relative velocity change

can decrease by 0.5% in Berea sandstone (Fig. 4). As shown

in Fig. 8, experimental results in several rocks give a nearly

square amplitude dependence for the offset.

b. Comparison with classical nonlinear theory. The

quadratic elastic nonlinear model does predict the presence of

a non zero Dc
c j�¼0 or Dc

c j0x (identical in this case).30,31 This

term is not described by Eqs. (7)–(9), but is concomitant with

the creation of the second harmonic (b 6¼ 0; xþ x! 2x;
x� x! 0x, with u0x ’ 2u2x), however, values found in

rocks are orders of magnitude higher than what the model pre-

dicts. For comparison, using u0x ’ 2u2x ¼ 2:6 nm for the

highest amplitude of excitation as found in Fig. 5(b) (i.e.,

b ’ 102), the expected relative length change (equivalent to a

static strain) is roughly u0x=L ¼ 10�6%, five orders of magni-

tude lower than the observed relative velocity change (0.5%).

Furthermore, the physical phenomenon is different since the

offset observed in undamaged materials with atomic based

nonlinearity is due to a length change,30,31 whereas typical

0.5%-drops observed in rocks or damaged materials are pri-

marily due to speed of sound change, i.e., a softening of the

modulus. Another difference is the fact that the post excitation

recovery, often called slow dynamics, is much longer3,7,32

than relaxation observed in undamaged materials, i.e., the

modulus recovers within minutes, hours or days, vs microsec-

onds or less for the length recovery.31

Second, the classical nonlinear theory extended until the

cubic term (d 6¼ 0) gives an offset in the HF field having a

square-law dependence with fundamental amplitude (d�2=4

in Eq. (8)) and a zero Dc
c j-intercept. In Fig. 9(a), the experi-

mental curve is the same as the one presented in Fig. 4 for an

intermediate amplitude of excitation (� ¼ 10�6). Coefficient

d ¼ �2:108 is chosen such that curvatures of the experimen-

tal data and the model are similar. The cubic elastic nonlin-

ear model does not predict a non zero Dc
c -intercept as found

in the experiment.

c. Comparison with quadratic hysteretic nonlinear

theory (uniform PM space). Finally, the quadratic hysteretic

nonlinear model (a 6¼ 0) predicts an average softening of

materials equal to the Dc
c -intercept (Dc

c j0x ¼ Dc
c j�¼0 ¼ a�m

2
, as

seen in Eqs. (8) and (9)). Fig. 9(b) compares the nonlinear sig-

nature obtained at the highest strain amplitude (also visible in

Fig. 4(a) with the typical bow-tie obtained for the hysteretic

model.33 As predicted by this model, signatures obtained at

high strain amplitudes have an offset roughly equal to the Dc
c -

intercept (Dc
c j0x ’ Dc

c j�¼0). The value a ¼ �1200 in Fig. 9(b)

is fit such that both experimental and modeling curves have

the same average softening modulus, while �m is set to the

maximum strain experienced by the material (8 � 10�6 in

Fig. 9). Both curves present a bow-tie signature, however, one

clearly observes that if the model is set at the same average

velocity, the hysteresis predicted by the model becomes much

bigger than what is found in the experiment.

d. Other hysteretic nonlinear theories. The observed

experimental Dc
c -intercept is associated with the phenomenon

of conditioning, widely reported earlier with other experi-

mental methods7,32,34–36 and DAE.3 Indeed, each larger exci-

tation amplitude takes the material to a metastable state18

FIG. 8. Amplitude dependence of the

offset (Dc
c jx¼0) for three samples of

Berea and one sample of Meule sand-

stones. This offset is clearly visible in

Figs. 2(b) and 4. A nearly quadratic de-

pendence is found for the four rocks.
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and the sample recovers slowly to its original state after the

excitation is turned off. This is the well known phenomenon

of slow dynamics.7 The “soft-ratched” model,24 based on

bond restoration and rupturation, could a priori predict the

offset and the Dc
c -intercept, as well as a modified version of

the Preisach-Mayergoyz theory,33 where hysteretic units can

be either rigid or elastic.23 These models have been origi-

nally developed for comparison with average based methods

(e.g., Nonlinear Resonance Ultrasound Spectroscopy

(NRUS)). Modifications of some of these models are cur-

rently in progress to simulate DAE experiments. As summar-

ized in Table I, both models could potentially predict the

complexity of conditioning/slow dynamics effects observed

with DAE, as well as the amplitude dependence of the har-

monic content. Modeling of these phenomena could also

potentially help in understanding the scaling change

observed at high strains (Fig. 6). Table I highlights the diffi-

culty to describe the wealth of observations with a minimum

of parameters. For application purposes, it might be relevant

to concentrate only on the modeling of few phenomena to

ultimately have the ability to perform the inverse problem.

In particular, we think that efforts have to be carried out to

describe conditioning/slow dynamics effects that are domi-

nant over hysteretic behaviors.

3. Influence of the ultrasonic probe amplitude

DAE results are performed using a 10 V-amplitude ul-

trasonic probe source. This voltage allows one to obtain low-

noise measurements for both nonlinear elastic (Fig. 4)

and dissipative (not shown in Refs. 3–5) signatures. The

10 V-amplitude corresponds roughly to a strain �US ¼ 10�6

(strain value is found using a laser vibrometer), while the LF

strain �LF is in the range of ½3:10�8 ! 10�5�. Thus, the quali-

fication of probe and pump waves can be misleading at low

LF strain when �LF < �US.

To confirm our assumption that the ultrasonic signal just

reads the elastic state of the sample modulated by the LF

pump excitation, we perform DAE at two different ultrasonic

probe amplitudes: either 10 V or 1 V is sent to the US emitter

which corresponds, respectively, to �US ¼ 10�6 and 10�7.

Voltage below 1 V results into noisy measurements. These

DAE measurements are performed at two LF strain

(�LF ¼ 10�6 and 10�5). Each measurement is performed

three times. Each signature is the average of ten acquisitions,

and we wait 30 s between each pump excitation. Because

conditioning can also affect the measurement (30 s is not

enough to completely recover, see Sec. II B), we alternate

one measurement with 10 V, one with 1 V, etc.

For intermediate LF strain (�LF ¼ 10�6) in Fig. 10(a), no

difference is observed whether US pulses are launched with 10

or 1 V. Signatures are also visually similar at high LF strain

(�LF ¼ 10�5) in Fig. 10(b). However, we observe an increasing

offset with experiment number (offset Exp. 1 < offset Exp.

3 < offset Exp. 5) due to conditioning. Further, the offset is

slightly smaller with 1 V than with 10 V (offset Exp. 6 < offset

Exp. 5; offset Exp. 4 < offset Exp. 3; offset Exp. 2 < offset

Exp. 1). This suggests that the ultrasonic probe slightly

increases the offset when launched at 10 V (�US ¼ 10�6), par-

ticipating modestly to the conditioning. The ultrasonic probe

contribution to the global conditioning is, however, much

smaller than the conditioning induced by the LF pump field.

FIG. 9. Comparison model/experiment. (a) Comparison between experiment and the cubic elastic nonlinear model (cubic part of Eq. (7), i.e., b ¼ a ¼ 0). The

experimental curve presented here is the same as the one presented in Fig. 4 for an intermediate amplitude of excitation (� ¼ 10�6). Coefficient d ¼ �2� 108

is chosen such that curvatures of the experimental data and the model are similar. The cubic elastic nonlinear model does not predict a non zero Dc
c -intercept as

found in the experiment. (b) Comparison between experiment and the quadratic hysteretic elastic nonlinear model (hysteretic part of Eq. (7), i.e., b ¼ d ¼ 0).

The experimental curve presented here is the same as the one presented in Fig. 4 for the highest amplitude of excitation. The quadratic hysteretic nonlinear

model does predict an offset equal to the Dc
c -intercept, as approximately found in the experiment for highest strain amplitudes (Dc

c j0x ’ Dc
c j�¼0). Coefficient

a ¼ �1200 is fitted such that both curves have the same offset, and with �m ¼ 8:10�6, the maximum strain experienced by the material. In that case, the hyster-

esis is much larger in the model than in the experiment.
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B. Resonant low frequency field

1. “Steady-state” regime of the harmonic content

The different scalings presented in Sec. III A (Figs. 5–8)

were extracted in the steady-state regime, i.e., between 0.1 and

0.3 s in Fig. 2. Applying it on successive moving windows of 6

periods over the steady-state regime (Fig. 11(a)) allows one to

observe the evolution of harmonic amplitudes in Fig.

11(d)–11(l). Such piecewise procedure could also be of great

interest to analyze the HF field, but the down sampled HF sig-

nal is not long enough to properly extract its harmonic content

(the excitation length is limited by the memory of the acquisi-

tion card). However, low pass filtering of the HF signal allows

one to follow the evolution of the offset (Figs. 11(b) and 11(c)).

One can clearly see from Fig. 11 that an actual steady-state

(between 0.1 and 0.3 s) is not attained during our experiments,

during the 0.3 s of excitation. Despite the constant amplitude of

the fundamental displacement in Fig. 11(d), the offset slightly

FIG. 10. Influence of the ultrasonic pulse

amplitude on DAE signatures. (a) 10�6-

LF strain. No change is observed whether

ultrasonic pulse amplitude is 10�7 or

10�6. (b) 10�5-LF strain. Signatures are

also visually similar at high LF strain.

However, we observe an increasing

offset with experiment number (offset

Exp. 1 < offset Exp. 3 < offset Exp. 5)

due to conditioning. And the offset is

slightly smaller with �us ¼ 10�7 than

with �us ¼ 10�6 (offset Exp. 6 < offset

Exp. 5; offset Exp. 4< offset Exp. 3; off-

set Exp. 2 < offset Exp. 1). This suggests

that the ultrasonic probe slightly affects

the offset when launched at 10 V, partici-

pating modestly to the conditioning.

FIG. 11. Time dependence of the harmonic content. (a) Low frequency signal (displacement), similar to Fig. 2(a). (b) High frequency signal (relative velocity

change), similar to Fig. 2(b). (c) Low pass filter of (b) to show the increase of the offset (in absolute value) in the “steady-state” regime (100 to 300 ms). (d)–(l) Time

evolution of the harmonic content between 100 and 300 ms. A log(t)-decrease of odd harmonic amplitudes is observed and an actual steady state is not attained.
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increases (in absolute value) in a log(t)-dependence and

amplitudes of odd harmonics decrease with the same de-

pendence. Amplitudes of even harmonics remain constant.

This observation is related to the progressive conditioning of

the material that takes place during the excitation. The

increasing offset corresponds to a speed of sound decrease

with excitation time, similarly to the decrease in the reso-

nance frequency with conditioning (Fig. 3 of Ref. 7).

Simultaneously to the progressive time delay, we observe an

increase in attenuation for all our tested samples,35 i.e., the

amplitude of US pulses decreases with a similar time de-

pendence (not shown). To our knowledge, the decrease in

amplitude of odd harmonics with excitation time due to con-

ditioning has not been reported elsewhere. This observation

confirms that conditioning affects the nonlinear elasticity.

The decrease in odd harmonic amplitudes may be related to

a decrease in hysteretic elastic nonlinearity, affecting only

odd harmonics (or a decrease in classical cubic elastic nonli-

nearity for the third harmonic). However, we observe that

the offset in Fig. 11(c) keeps increasing, suggesting that the

nonlinearity slightly increases with excitation time (i.e., con-

ditioning). These observations seem contradictory a priori,
but it suggests that new nonlinear models have to be devel-

oped to properly take into account the conditioning

effects.24,36,38 In Ref. 37, authors show that longer the condi-

tioning, the higher is the global measured nonlinearity (fun-

damental þ harmonics; Fig. 9 of Ref. 37). This result seems

relevant with the increasing offset, but contradictory with the

decrease in odd harmonics. Modeling work based on new

physical insights38 or modified version of existing model to

simulate DAE measurements (PM-space based model23,36),

are currently in development to clarify this point.

Fig. 11 presents the evolution of the harmonic content and

the offset for only one amplitude of excitation in the Berea

(�x ¼ 6:10�6). The same analysis for all other amplitudes

reveals some more complex behaviors, particularly for the third

harmonic. Indeed, all odd harmonics decrease with excitation

time at all strain amplitudes, with the exception of the ampli-

tude of the third harmonic which displays a more complex

behavior for several strain amplitudes. This might be related to

the fact that the third harmonic amplitude has two contributions

having the same order of magnitude: one due to the hysteretic

behavior which affects all odd harmonics, and a second one

due to the classical nonlinearity, still of importance for the third

harmonic (cubic nonlinearity, term d of Eq. (7)). This point will

not be developed further in this paper but will be pursued in

future work.

Finally, the fact that the steady-state is not completely

reached in 0.3 s does not affect scalings found in Sec. III A.

Fig. 12 confirms this statement showing that the nonlinear

signature does not significantly change with excitation time,

only a slight decrease of the offset and the Dc
c -intercept can

be seen in Fig. 12(c).

2. Modal shape measurements

a. Axial x-direction. To confirm our assumption that the

displacement field in the bar is the k=4 mode, we undertake an

investigation of the mode shapes. To do this, we employ a fiber-

optic differential laser vibrometer39 (Polytec OFV 552) to mea-

sure the longitudinal particle velocity _ux along the sample length

of a Berea sandstone while emitting from the LF source (Fig.

1(b)). Results of this measurement are displayed in Fig. 13. One

can clearly observe the expected profile for the deduced dis-

placement and strain (Figs. 13(a) and 13(b), respectively).

Further, the region probed by US pulses in DAE at 20 mm from

the fixed boundary has a maximum strain amplitude equal to the

strain deduced from the accelerometer. This validates the

FIG. 12. Evolution of the nonlinear signature with time excitation in Berea sample for a 10�5 strain. (a) Low frequency strain vs time, similar to Fig. 2(a).

(b) Relative velocity change vs time, similar to Fig. 2(b). (c) Relative velocity change vs strain. A slight decrease of the offset and the Dc
c -intercept is visible

with time excitation due to sample conditioning. Note that conditioning only modestly affects amplitude dependences found in Fig. 6.
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assumption made to deduce the strain amplitude in the probed

region from the acceleration measured at the free end of the

sample �xðh; tÞ ’ �xð0; tÞ ¼ �€uxðL; tÞ=ð8p Lf 2
LFÞ. Displacement

amplitudes at 2x and 3x are also tracked and can be compared

to theory (appendix A 2 and B, respectively). Harmonic ampli-

tudes are three orders of magnitude smaller than the fundamental

as seen in Fig. 13(a), and their spatial structure qualitatively

agrees with theoretical predictions (Figs. 13(c) and 13(d)).

Therefore, the higher harmonic axial displacements have a negli-

gible effect on DAE measurements (the HF field).

b. Radial y-direction. Another measurement is made to

measure _uy instead of _ux along the sample length, to capture

the modal shape of the first compressional mode through the

Poisson effect (Fig. 1(b)). Profiles obtained on both sides of

the sample in Fig. 14(a) are not the Poisson version of the

FIG. 13. The axial velocity _ux is measured along the sample length (Berea) on opposite sides of the sample (lines perpendicular to y and –y), at the frequency

of the first compressional mode (’4000 Hz). (a) Axial displacement deduced from the axial velocity at x, 2x, and 3x. We observe the expected quarter wave-

length profile obtained for the first compression mode. (b) Strain profile deduced from the axial displacement at the fundamental frequency, also predicted

by theory. (c) Displacement profile at the second harmonic. The profile experimentally obtained qualitatively agrees with the theory (Fig. 15(b), appendix A 2).

(d) Displacement profile at the third harmonic. The profile also qualitatively agrees with the theory (Fig. 16(a), appendix B).

FIG. 14. The radial velocity _uy is measured along the sample length (Berea) on opposite sides of the sample (lines perpendicular to y and –y), at the frequency

of the first compressional mode (’4000 Hz). (a) Radial displacement deduced from the radial velocity on both sides of the samples. Displacement profiles

obtained are not the Poisson version of the axial profile obtained in Fig. 13. (b) Temporal displacement signals obtained on both sides of the sample are added

to obtain the differential displacement profile Dux
y . Radial strain is then estimated using �xy ¼ Dux

y =d.
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axial profile obtained in Fig. 13(a), and appear to be influenced

by adjacent bending/torsion modes. The closest non compres-

sional modes are present at 5000 and 5500 Hz for the Berea

sample. It is worth noting that the two displacement modal

shapes measured on each side of the sample are not symmetric,

which reveals the presence of a complex vibrational behavior,

with possibly two different adjacent modes influencing the com-

pressional mode. Both temporal displacement signals measured

on each side of the sample are then added to obtain the differen-

tial radial displacement Dux
y . This quantity tracks whether dis-

placements on each side of the sample occur in phase or not,

and whether radial strain is involved. This differential displace-

ment is converted into radial strain using �xy ¼ Dux
y =d (Fig.

14(b)). Despite the complexity of displacement profiles origi-

nally measured, the deduced radial strain profile appears to be

simple, with one single node located near the fixed boundary.

However, this profile is not the Poisson version of the axial

strain profile found in Fig. 13(b) (both profiles should look simi-

lar). There is no clear interpretation on why such a radial profile

is found, with radial strain reaching its maximum at the free

end of the bar. Since the largest displacements occur at the free

end of the bar, irregular geometry could be one of the reasons

for this result. Indeed, axial displacement is 300 nm (Fig. 13(a))

at the free end of the bar, while 30 nm-radial displacement is

measured (Fig. 14(a)). This would give an angular irregularity

of arctanð30=300Þ ’ 5:7�. This value is probably too large to

entirely explain this unexpected result, but it may be part of it.

With the same idea in mind, if a torsion motion due to adjacent

mode is present and if the rod sample is not perfectly circular,

this could contribute to artificially high radial strain values.

Nevertheless, it is of interest to observe that the radial strain

seems to be very small in the probed region: �xy ðh; tÞ
< 3� 10�7 as opposed to �xx ðh; tÞ ¼ 3:5� 10�6 in the axial

direction, i.e., more than 10 times smaller. Strain in the probed

region is therefore primarily in the axial direction as required to

perform reliable DAE measurements.

Finally, this detailed measurement shows that axial strain

modal shapes experimentally measured are those expected

theoretically for the first compressional mode of the sample.

Spatial structures of harmonics measured at 2x and 3x are

also qualitatively close to the theory. This experimental work

supports the assumption of a non-disturbed compressional

mode, despite the complexity found when measuring radially,

possibly due to adjacent modes and/or slightly irregular geom-

etry. In any case, one can try to minimize the influence of

adjacent modes by choosing an appropriate length/diameter

ratio for each sample, to prevent the frequency of the com-

pressional mode to be too close to the frequency of bending/

torsion modes. Further, maximizing the diameter and probing

near the fixed boundary certainly help to reduce the influence

of torsion/bending modes, but still keeping in mind that the

US time of flight must be much smaller than the LF period to

perform a reliable DAE measurement.

IV. CONCLUSION

This work aims at exploring experimental considera-

tions in applying the dynamic acousto-elasticity method, as

well as making quantitative comparisons to existing theories.

We introduce a projection procedure in order to quantita-

tively extract harmonics. We compare LF and HF fields and

show that both can be described by the nonlinear quadratic

elastic model. Further, the higher harmonic content extracted

is in agreement with previous results obtained in rocks with

other methods [NRUS, for instance]. Several differences

between experimental data and existing theories are, how-

ever, highlighted (Table I). The power-law amplitude de-

pendence for harmonics greater than 2f progressively

decreases for strains higher than 10�6. This phenomenon is

related to acoustic conditioning that brings the material to a

metastable state at each new amplitude excitation. The am-

plitude dependent attenuation that comes from the nonlinear

hysteretic behavior may also be a second reason for the scal-

ing changes observed for the LF field. Current modeling

work, which combines nonlinear hysteretic behaviors and

conditioning/relaxation, will certainly help in understanding

these observations.23,24,36,38

The second part of this work aims at clarifying several

points related to the resonant LF field. We show experimen-

tally that the expected quarter wavelength profile is present

in our sample. Several suggestions are given to minimize the

influence of adjacent resonant modes near the first compres-

sional mode. We also show that the LF harmonic content has

a negligible influence on DAE results. In addition, the care-

ful study of the steady-state regime allows one to observe the

effect of the conditioning on DAE results and the evolution

of the harmonic content due to this conditioning. This obser-

vation emphasizes the fact that modeling of conditioning/

slow dynamics is of utmost importance to accurately

describe the elasticity of rocks, cracked materials, etc. It is

also worth noting that the comparison made between both

fields can be applied to any pump-probe measurement

scheme and the analysis of the steady-state can be applied to

any nonlinear resonant method.

DAE provides new information regarding the nonlinear

elastic properties of materials compared to other acoustical

methods (wave frequency mixing or resonance based measure-

ments) because it provides the full dynamic cycle (including

hysteresis and memory effects), as well as a more complete

description of the acoustic conditioning (offset and Dc
c -inter-

cept), revealing some important differences with existing theo-

ries. In comparison with quasi-static acousto-elasticity that

only characterize the compressional phase, DAE has the

advantage to probe both tensile and compressional states in a

single experiment, and for smaller strains (closer from the

equilibrium state). For application purposes, DAE has the

advantage of probing the sample locally, making it relevant for

imaging in various fields such as non destructive testing, medi-

cal imaging (bones, contrast agents, etc), and rock physics/seis-

mology. In particular, one of the current research topics in

seismology is to use tidal forces for the low frequency field,

and passive noise or earthquake seismicity as the probe.
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APPENDIX A: QUADRATIC ELASTIC NONLINEAR
THEORY AND DAE

1. Wave equations

This appendix theoretically describes the dynamic acousto-

elasticity measurement assuming a simple quadratic elastic non-

linearity, implying third order elastic constants A, B, C.2 This

description implies an isotropic material and is used in Sec.

III A 1 to verify the consistency of both wave fields. Similarly to

standard acousto-elastic experiments (i.e., static version of this

experiment), the propagation of low amplitude ultrasonic pulses

within the sample is modulated by a high amplitude change in

the strain field. Regarding the particular setup (Fig. 1), where

the longitudinal ultrasonic waves propagate perpendicularly to

the uniaxial quasi-static field, the equation of motion for the

high frequency pulses is given by (Chapter 3 of Ref. 6)

q
@2uy

@t2
¼ @

@y
½K0ð1þ by�xÞ�y� (A1)

with

by ¼
K � 2

3
lþ 2Bþ 2C

K0

; (A2)

where K0, K, and l are the longitudinal, bulk, and shear mod-

uli, respectively. �x ¼ @ux=@x and �y ¼ @uy=@y denote the

longitudinal strain in each direction. Similarly, the LF strain

field obeys6

q
@2ux

@t2
¼ @

@x
½K0ð1þ bx�xÞ�x� þ FðtÞdð0Þ (A3)

with

bx ¼
3

2
K þ 2lþ Aþ 3Bþ C

K0

: (A4)

F is the LF source driving the sample, located at the

fixed boundary (0 < x < L, where coordinates 0 and L are

the fixed and free boundaries, respectively). From Eqs. (A1)

and (A3), it follows that by involves the coupling �x�y,

whereas bx involves the coupling of �x with itself (term �2
x).

Therefore, for a purely quadratic nonlinearity, the quantity
Dc
c j2x obtained by projecting onto x-functions should be pro-

portional to ux, with a slope proportional to by. Further, u2x

should be proportional to u2
x, with a slope proportional to bx.

From Table 11.1 of Ref. 6, one finds bx ’ 2by.

2. “Modal” shape of the 2x-signal

Having these scales in mind, we now quickly pay atten-

tion to the forced regime of the LF field. Indeed, the fre-

quency of the source F is tuned to a quarter wavelength

resonance, creating a standing wave within the sample. The

second harmonic generated within the sample does not meet

simple boundary conditions to resonate and its presence

along the bar is more complex. To solve this problem,6,33

one can use a hierarchy of equations to solve Eq. (A3),

replacing ux by uxðtÞ ¼ nu
ð1Þ
x ðtÞ þ n2u

ð2Þ
x ðtÞ and F by nF,

where n helps grouping terms of the same order of magni-

tude. The subscript x denotes that the Fourier representation

of Eq. (A3) is used to solve it.6,33 At the free end of the bar,

one finds

uð1Þx ðLÞ ¼ �
C1

2
½Gx0ðLj0Þdðx� x0Þ

þ G�x0ðLj0Þdðxþ x0ÞÞ�; (A5)

where Gx0ðLj0Þ is the Green function for propagation from 0

to L (fix to free end). This first term gives the linear solution

of the equation and is used to calculate u
ð2Þ
x ðLÞ

uð2Þx ðLÞ ¼ C2

ðL

0

dx
@

@x
G2x0
ðLjxÞ @

@x
Gx0
ðxj0Þ

� @

@x
Gx0
ðxj0Þdðx� 2x0Þ; (A6)

where C2 / bxC2
1. u

ð2Þ
x ðLÞ only exists for x ¼ 2x0 and then

represents the displacement of the second harmonic within

the sample. This equation emphasizes the idea that the

source of the second harmonic is distributed along the bar

(term Gx0
ðxj0Þ), and that each source at 2x is carried

throughout the sample by the 2x-term G2x0
ðLjxÞ.

Numerical implementation of Eq. (A6) gives several

indications for our problematic. First, the maximum strain

amplitude at 2x in Fig. 15(c) is found near the sample center

(x ’ 0:65L here, depending on attenuation), whereas it

reaches zero on both edges of the bar. This particular shape

is a compromise between the fact that (i) the x-source is

higher near the fixed boundary (Fig. 15(a)), (ii) the 2x-signal

grows with propagation distance, and (iii) boundary condi-

tions impose a null strain at the free end of the bar. The dis-

placement profile in Fig. 15(b) can be compared with

experimental curve found in Fig. 13(c).

The second lesson of this theoretical part is that the

2x-signal at the free end is found 90� out of phase with the

fundamental. These findings are compared with experimental

results in Sec. III.

APPENDIX B: HYSTERETIC ELASTIC NONLINEARITY:
“MODAL” SHAPES OF ODD HARMONICS

This appendix aims at describing the spatial structure of

odd harmonics generated in the sample with fixed-free

boundary conditions (Fig. 1), assuming simple hysteretic

nonlinearity.

As background, we need the constitutive 1D-relation for

material that has simple Preisach-Mayergoyz space nonli-

nearity,6,16 assuming a uniform distribution of elementary

hysteretic elements. The relevant formula is a pointwise for-

mula for the stress-strain in a resonant bar6
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r ¼ M ð1� a�mðxÞÞ�þ
a
2

signð _�Þð�2
mðxÞ � �2Þ

� �
; (B1)

where �mðxÞ is the magnitude of the strain excursion at x.

The first term ð1� a�mðxÞÞ� on the RHS relates to the change

in the behavior of the fundamental frequency. The second

term is the source of the higher harmonics. We are interested

in the latter, so write ux ¼ u0 þ w and have

@2w

@t2
¼ c2 @

2w

@x2
þ c2 @

@x

a
2

signð _�0Þð�2
0mðxÞ � �2

0Þ
� �

¼ c2 @
2w

@x2
þ c2 @

@x
Hðx; tÞ; (B2)

where

u0 ¼ U sin k1x sin xt;

�0 ¼ k1U cos k1x sin xt;

k1 ¼
p
2L
; x ¼ k1c;

(B3)

and

�0m ¼ k1U cos k1x: (B4)

On using the equation for �0 in Eq. (B2), the “source” term

on the right becomes

Hðx; tÞ 	 a
2

signð _�0Þð�2
0mðxÞ � �2

0Þ ¼ hðxÞmðtÞ (B5)

with

hðxÞ ¼ a
2
ðk1U cos k1xÞ2;

mðtÞ ¼ signðcos xtÞ cos2xt:
(B6)

The spatial structure of the “source” caused by hysteresis is

given by hðxÞ / cos2k1x (same source as the quadratic model

in appendix A, see Fig. 15(a)), and the time dependence of

this source is m(t). It is shown that m(t) can be represented as

a power series in odd harmonics of the fundamental33

mðtÞ ¼
X

n¼3;5;7;



cn cos nxt; (B7)

where

cn ¼
8

p
�1

nðn2 � 4Þ sin
np
2
: (B8)

Because the source in Eq. (B2) contains odd harmonics,

we expand w as a power series in odd harmonics

wðx; tÞ ¼
X

n¼3;5;7;



wnðxÞ cos nxt: (B9)

Then,

@2wn

@x2
¼ �ðknÞ2wn � cn

@hðxÞ
@x

: (B10)

The solution to this equation, for the shape of the cos nxt
mode, is

wn ¼
ðL

0

dx Gnðxjx0Þ
@hðx0Þ
@x0

; (B11)

FIG. 15. Second harmonic generation along the bar assuming a quadratic elastic model. (a) Spatial profile of the source (axial strain) at the fundamental fre-

quency x. (b) Displacement profile of the second harmonic along the bar (Eq. (A6) gives the value in x ¼ L). This spatial shape can be compared with experi-

mental curve found in Fig. 13(c). A qualitative good agreement is found. (c) Strain profile deduced from the displacement profile. Maximum strain is found

near the bar center.
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where Gn is the Green function associated with Eq. (B10).

Before doing numerical work, one integration by parts is

used

wn ¼ �
ðL

0

dx
@Gnðxjx0Þ

@x0
hðx0Þ: (B12)

The Green functions are

Gnðx > x0Þ ¼ 1

kn cos knL
cos knðL� xÞ sin knx0;

Gnðx < x0Þ ¼ 1

kn cos knL
sin knx cos knðL� x0Þ

(B13)

with kn ¼ np=ð2LÞ.
The source function goes as cos2k1x and is distributed

throughout the bar although concentrated near x ¼ 0

(Fig. 15(a)). The spatial structure of odd harmonics n¼ 3, 5,

7, 9 are shown in Fig. 16. These modes have a shape more or

less like the free modes of the bar, sin knx, but are distorted

from this shape by the distributed source.

From this description, several conclusions can be

highlighted:

(1) The strain behavior of hysteretic elastic elements leads to

an interior source that is spatially distributed and moves in

time with the odd harmonics of the fundamental. It is the

fundamental that is driven by the external source.

(2) The spatial structure of the odd harmonics is qualita-

tively similar to the spatial structure of the free vibra-

tions. A probe located along the axis of the bar will see

each odd harmonic through the b nonlinear coupling.

The amplitudes of the odd harmonics scale at ðk1UÞ2
(Eq. (B5)). The relative amplitude of each odd harmonic

depends on the amplitudes in Eq. (B8) and on where the

probe encounters the harmonic.

(3) The time dependence of the odd harmonics is cos nxt,
out of phase with the fundamental at sin xt. This result

can be compared with experimental findings in Fig. 7.

APPENDIX C: GRAM-SCHMIDT PROCESS

The Gram-Schmidt process allows one to build a set of

orthonormal functions. The set of functions that we need to

analyze our data are a series of sine and cosine functions

with frequencies ranging from the fundamental (pulsation

x) up to the nth harmonic (nx) to extract the harmonic con-

tent. The main interest in using this method is that we can

extract the frequency content of a signal that is poorly

sampled. For example, the signal in Figs. 2(b) and 2(d)

contains information at the fundamental (f ’ 4000 Hz) and

harmonic frequencies (2f, 3f,…), but its sampling rate is

only 10 kHz (corresponding to the repetition rate of the HF

pulse).

The following recipe is applied to build the set of ortho-

normal functions. All the functions are introduced one by

one, making sure that each is orthogonal with previously

introduced functions. The first function is a sine at the

fundamental

S1ðtkÞ ¼
sinðxtkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

k¼1
sin2ðxtkÞ

q ; (C1)

FIG. 16. Axial displacement profile of odd harmonics along the bar assuming a simple hysteretic elastic model (Eq. (B12)). Because these harmonics meet

appropriate fixed-free boundary conditions to resonate, spatial shapes are similar to theoretical compressional modes: only the distributed source along the bar

slightly modifies them. (a) Third harmonic. This spatial shape can be compared with experimental curve found in Fig. 13(d). A qualitative good agreement is

found. (b) Fifth harmonic. (c) Seventh harmonic. (d) Ninth harmonic.
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where the denominator allows one to norm the function. M is

the total number of points of the original signal. The second

function is a cosine at the fundamental frequency

C1ðtkÞ ¼
cosðxtkÞ �

hXM

k¼1
S1ðtkÞ cosðxtkÞ

i
S1ðtkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

k¼1
cos2ðxtkÞ

q : (C2)

The second term of the numerator orthogonalizes C1 with

the previous function S1. This orthogonalization is needed

because of finite length signals and rounding errors during

the numerical implementation. A third function, sine at 2x,

is then introduced, orthogonalized with the two previous

ones

S2ðtkÞ ¼
sinð2xtkÞ �

hXM

k¼1
S1ðtkÞ sinð2xtkÞ

i
S1ðtkÞ �

hXM

k¼1
C1ðtkÞsinð2xtkÞ

i
C1ðtkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM

k¼1
sin2ð2xtkÞ

q : (C3)

This recipe can be applied until Sn and Cn, n being deter-

mined according to the harmonic content. One can also

imagine choosing some functions at nx=2 in the case of sub-

harmonic frequencies. When the signal is poorly sampled,

one needs a fairly long signal to be able to extract the highest

harmonic content. That is the reason why the error increases

in Fig. 3(b), when N is chosen too high. Variables qn and rn

are used in Eq. (3) for notation simplicity.

Orthonormality can be checked making sure that

hSmjSpi 	
XM

k¼1

SmðtkÞSpðtkÞ ¼ dm;p

hCmjCpi 	
XM

k¼1

CmðtkÞCpðtkÞ ¼ dm;p

hSmjCpi 	
XM

k¼1

SnðtkÞCnðtkÞ ¼ 0;

(C4)

where dm;p is the Kronecker symbol (dm;p ¼ 1 if m¼ p, 0

otherwise).
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