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Abstract
We investigate some of the limitations of time reversal acoustics (TRA) in solid media with transducers
attached to the surface. In particular, we consider the limitations due to the finite size of the transducers and
elastic wave propagation. Using a theoretical approach, numerical simulations and validation from
laboratory ultrasound experiments, we find that finite size transducers and the existence of longitudinal and
shear waves play significant roles in perturbing the time reversal process. Despite these limitations, we show
that TRA in solids is very robust, providing the means to reconstruct the main features of the source signal.
The analysis of TRA retro-focusing properties in solid specimens is of foremost importance for the
development of new non-destructive evaluation techniques.

M Movie versions of figures 8, 9, and 10 are available in the online edition at
http://stacks.iop.org/JPhysD/41/085415

1. Introduction

Time reversal acoustics (TRA) techniques have been shown to
be efficient and robust in focusing acoustic/elastic waves on
targets inside a medium [1, 2]. A typical TRA experiment
employs an array of transducers (usually called the time
reversal mirror, TRM [3, 4]) which can function both as
receivers and as transmitters. TRA consists of two propagation
stages. In the first stage, called forward propagation, a
medium containing scatterers is illuminated by one or more
transducers and the TRM records the corresponding elastic
wave fields. The source in this first stage can be either
the TRM itself (reflection mode), which in turn receives the
backscattered waves, or other transducers (transmitting mode),
as well as natural sources in the specimen (e.g. acoustic
emission sources). The second stage (called time reversal (TR)
backpropagation [5, 6]) consists of time reversing the signals
and re-broadcasting them into the medium [5, 6].

During the second stage, the wave fields propagate in the
reverse direction along the same paths traversed during the
forward propagation. They retro-focus on the position(s) of

the source(s) and/or point-like scatterers3. The retro-focusing
takes place automatically since all the information about the
positions of the sources/scatterers is encoded in the signals
themselves as recovered and recorded during the first stage.
This description of the process (called the time reversal
process, TRP) is valid when the propagation medium is
linear and non-attenuative, the spatial reciprocity principle
holds and the medium properties are invariant in time. In
fact, the elastodynamic wave equation for a linear, lossless
and reciprocal solid medium, whose physical properties
do not change in time, is invariant for the time inversion
transformation.

Although in the case of attenuative media the symmetry
property of the wave equation is no longer valid, the TRP still
holds but with decreased efficiency. A detailed explanation of
why this happens is contained in appendix A.

Aside from attenuation, the finite size of the transducers
constituting the TRM and its finite aperture suggest the TRP
is not optimal. Ideally, in the absence of attenuation and in

3 The retro-focusing occurs also on extended scatterers as long as they can
be described as a collection of independent point-like scatterers.
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the presence of a closed surface, covered by transducers and
surrounding the source location (called time reversal cavity,
TRC [6]), the TR retro-focusing process would be nearly
perfect (affected only by the absence of the time-reversed
version of the evanescent waves locally produced by the
source during the forward propagation). However, Cassereau
and Fink have shown theoretically that plane 2D TRMs are
efficient alternatives to TRCs [7]. Many experimental studies
have demonstrated their robustness with this configuration
using 1D arrays. However the finite size of the transducers
introduces spurious effects due to their electro-mechanical
impulse response functions [2–4, 8, 9].

Most of the fundamental parametric studies on the
properties of TRA retro-focusing have been conducted in
fluids (acoustic wave propagation), including in the ocean [10].
Investigations in solids include TR retro-focusing with only
one TRM transducer, using a silicon wafer specimen [11–14]
and in full 3D reverberant solids (glass block and fine-grained
Berea sandstone) [15]. Additionally, some application-
oriented studies have been performed for developing new
techniques aimed at the localization of primary or secondary
sources (scatterers) in solid specimens [16, 17] using TRMs.

The analysis of TRA retro-focusing properties in solid
specimens is very important for the development of new non-
destructive evaluation (NDE) techniques. In particular, the
combination of the self-adaptive TR retro-focusing properties
with nonlinear ultrasonic techniques has led to the development
of a suite of techniques for locating and diagnosing cracks
and other mechanical damage in solids. This class of
techniques relies on Fourier analysis and is termed time
reversal nonlinear elastic wave spectroscopy (TR-NEWS).
An example is TREND (time reversal elastic nonlinear
diagnostics) that is applied to analyse and characterize complex
surficial cracks in a bounded solid specimen [18]. TREND
exploits the TRP through the automatic focusing of two
narrow-band elastic waves, with different central frequencies,
onto a scatterer (a crack) on the surface of the specimen. The
nonlinearity creates new frequency content from the two basic
input frequencies. Thus in TREND the frequency spectrum of
the focused signal is analysed for linear combinations of the
two basic frequencies and their harmonics [19–21]. Another
TR-NEWS technique that exploits the TRP and nonlinear wave
mixing for the selective location of nonlinear scatterers, such as
micro-cracks, employs the retro-focusing of only the nonlinear
components [22–24].

The main goal in developing focusing and imaging
techniques based on TRA is to overcome many of the
limitations that affect current laboratory ultrasound techniques,
such as phased-array imaging [25–27] and the synthetic
aperture focusing technique (SAFT) [28,29], but not the TRP.
Potential applications include structural health monitoring of
components of aircraft, spacecraft or infrastructure [30, 31],
biomedical diagnostic imaging [32, 33] and for medical
therapeutic purposes [32, 34–36].

Among the limitations of phased arrays and SAFT are the
presence of velocity and mass density heterogeneity inside the
propagation medium and at the boundaries. These are sources
of diffraction and aberration of wave fronts for most common

techniques. Both phased-array imaging techniques and SAFT
rely on the ray acoustics description of the propagation process
through the specimen to be imaged. Algorithms have been
developed in order to extend the range of these techniques to the
case of anisotropic homogeneous [37], and anisotropic highly
heterogeneous specimens with complicated geometries (see,
for example, the inhomogeneous anisotropic SAFT method,
InASAFT [38–40]); however, their efficiency in focusing
elastic energy onto scatterers dramatically decreases whenever
the ray acoustics description is invalid. This is due to, for
example, the presence of significant multiple scattering inside
the specimen or a wave guide propagation mode [40].

In contrast, TRA can retro-focus elastic energy in the
presence of scattering due to inhomogeneities or boundaries
[41–44]. It has been shown that TRA takes advantage
of multiple scattering in increasing the effective spatial
resolution [41]. These properties have been demonstrated
in a bounded water channel configuration [42, 45], in
shallow water waveguides with complex ocean environments
(fluctuating sound speed profiles and varying bottom surfaces)
[46–50], in configurations with a random multiply scattering
material interposed between the TRM and the region of
focusing/imaging [41], and in a thin plate (Lamb wave
propagation mode [51]). In the special case of a bounded
medium with a geometry resulting in chaotic/ergodic wave
front path dynamics, the focusing resolution can be augmented
beyond the limits imposed by diffraction [14], using a special
TRM configuration integrating an acoustic sink [6, 14].

Another limitation of traditional methods is connected
with the frequency-domain response of transducers. They act
as filters, increasing the time duration of the received signals at
their resonance frequencies. For example, the focal spot on a
scatterer location by the InASAFT technique depends upon the
pulse-width at the transducer location: wider pulses artificially
increase the image spot size [40].

Finally, in phased-array imaging, the number of
transducers needed is usually large [27, 52]. Equivalently,
the SAFT/InASAFT technique requires a large number of
locations on the surface area where the pulse-echo signals are
recovered (A-scans). As shown in [40], the larger the number
of A-scans, the better the resolution in locating the defects
acting like scatterers. This feature increases the complexity of
the procedure and apparatus for both the techniques and limits
their applications for industrial purposes. In contrast, TRMs
are very efficient with a reduced number of elements (relative
to phased arrays or SAFT/InASAFT setups) in the presence
of reflecting boundaries, such as closed cavities with special
geometries or waveguides [11–13, 42]. In addition, TRA
techniques automatically account for individual transducer
response heterogeneity such as phase mismatching.

The retro-focusing properties of TRA in fluids or with
solid specimens submerged in water (with the transducers also
submerged) are less complicated than when interrogating solid
specimens which have the TRM transducers directly attached
to the surface. In fact, because of the fluid environment, in
the case of submerged specimens only longitudinal waves
propagate and reach the transducers. The configuration
with transducers directly attached to the specimens is most
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commonly used in NDE and solid materials characterization,
in part because submersion is not always practical for such
purposes.

The configuration with directly attached transducers is
restrictive for the application of a typical TRA experiment.
Practically speaking, specimens to be inspected commonly
have complicated geometries and the number of transducers
used is normally limited. In water tanks, without the limits
due to finite size of specimens, the typical number of TRM
elements is on the order of one hundred, while, in the case
of experimental setups for NDE or materials characterization,
usually less than ten and often only one or two TRM
transducers are employed.

This limitation might imply a significant reduction of the
effective aperture of the TRM and, as a consequence, of the
spatial resolution of the retro-focusing process. However, it
can be overcome by recording the forward signals at the TRM
for a longer time, such that multiple reflections reach the TRM.
It has been shown theoretically and experimentally that, in
the presence of multiple scattering or multiple reflections, the
signal-to-noise ratio of the retro-focus signal in time increases
with the length of the TR window (the recording interval at
the TRM) until an asymptotic value is reached [53, 13]. The
multiple scattering/reflection improves the effective virtual
aperture of the TRM, as described by Roux et al [42] and
Tanter et al [54] using the principle of virtual mirrored sources.
In closed cavities with a geometry leading to chaotic/ergodic
ray paths dynamics, one TR transducer can be sufficient for
a near perfect reconstruction of the source, if the TR window
is long enough. In bounded media without such geometric
properties, the TR window must be longer in order to obtain
sufficient mixing of waves and provide enough sampling of the
cavity space [12, 13].

The finite size of TRM transducers also causes a loss
of spatial information about the forward propagating waves,
especially when the size is greater than or equal to the
central wavelength applied. In fact, transducers recover the
mean value of the wave fields impinging on their surfaces.
This response gives rise to the directional nature of a
finite-size transducer. Instead of piezo-electric transducers,
laser vibrometers can be used for detecting the forward
waves. However, the input signals for the TR backward
propagation must be re-broadcast into the specimen by means
of transducers4. This fact creates distortion and blurring in the
final TR image.

Complicating aspects of employing TRA in solids
includes the presence of longitudinal and shear waves,
mode conversion at the boundaries and interfaces and
the selective response of piezo-electric transducers to only
certain components of the wave fields. Even in a solid
specimen submerged in fluid, the solid–fluid interface leads
to the generation of two longitudinal waves, one created by the
refraction of the longitudinal wave, the other generated by
the refraction of the shear-vertical wave within the solid. The

4 Some thermoelastic techniques, involving high power laser pulses incident
on the surface of the specimen, have been used in TRA experiments [55, 56],
especially for the generation of surface sound/ultrasound waves, but they are
not feasible for all types of TRA experiments with solid media.

shear-horizontal component is totally internally reflected and
does not reach the TRM [57]. The information loss due to
mode conversion is present (and even more complicated) in
the case of a TRA experiment with the transducers attached
to the surface of the solid specimen, due to the solid–solid
interface at the transducer’s face. In addition, single-mode
(compressional or shear) transducers, mainly excited by only
one vector component of the propagating vector wave field,
can only re-broadcast a portion of the total incident field.

The purpose of this work is to present the results of a
set of studies, both theoretical and experimental, aimed at
investigating the robustness and efficiency of TRA in solids
using TRMs bonded directly to their surfaces. These issues
were first addressed by Delsanto et al [58] with numerical
simulations and by Sutin et al [15] experimentally. We
show that the finite size of TRM transducers and the small
number of TR elements used do not significantly degrade the
retro-focusing.

In section 2 we present the general approach, followed, in
section 3, by a theoretical investigation of a gedanken (thought)
TRA experiment in elastic media, with embedded point-
like source and receiver. Appendix B shows some general
properties of convolution integrals used in the theoretical
analysis while appendix C completes it with the extension of
the formulation to the case of an extended source and receiver.
Section 4 describes the validation of the theoretical treatment
using numerical simulations in 2D and section 5 reports the
results of laboratory experiments.

2. General approach

A criterion for evaluating the robustness of TRA experiments
is the analysis of the quality of the reconstruction of
band-limited temporally symmetric source signals. We
consider the following TRA experiment both numerically and
experimentally: TR reconstruction of a temporally symmetric
source signal injected into the specimen by a single, finite-size
transducer bonded to the surface of the specimen acting as a
transmitter during the forward propagation and as a receiver
during the backpropagation. We consider a solid specimen
with parallelepiped geometry. The same type of a TRA
experiment is performed twice. In one case the diameter of
the TRM transducer is larger than the central wavelength of the
propagating wave packet, while in the other it is smaller. We
choose these two types of experiments in order to investigate
the role of the finite size of transducers in the TR source
reconstruction process and to make broader inferences.

We intentionally select a configuration that does not favour
the TR process. The geometry of the specimen does lead to
multiple reflections at its boundaries but the wave front path
dynamics are not ergodic. A long TR window is chosen in
order to guarantee sufficient mixing of the wave front paths
for achieving retro-focusing with only one TRM transducer.
Its finite size implies the loss of a significant amount of
information regarding the forward propagation. Finally,
as previously mentioned, we consider a TRM transducer
operating only in compressional mode, i.e. it can be excited
only by the components of the different vector wave fields
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impinging on its surface along the orthogonal direction5. The
above characteristics are selected because they are typical
for NDE inspection of solid specimens, as well as numerous
laboratory experiments.

3. Theoretical analysis

As a starting point, we consider an elastic medium under
the following three general hypotheses, (I) the elastic
wave propagation through the medium is completely linear,
(II) spatial reciprocity is valid throughout the whole medium,
(III) the elastic wave propagation properties of the medium
are considered stationary in time, i.e. the Green function of
the medium for any pair of points is invariant under time shift
transformations.

We consider two ideal point-like transducers, A and B,
located in the medium at different positions rA and rB . A is
the source of the forward propagation and B the only TRM
transducer. At time t = 0 the source at A emits a signal
(a pulse, for example) symmetric about t = 0, s(t). The
resultant signal at B, sB(t), is recorded during the time interval
[0; tR]. The corresponding time-reversed version of this signal,
s−
B (t) = sB(tR − t), is re-broadcast (assuming that t = 0

is the start time of the backward propagation). The induced
signal at A, sA(t), is recorded during the backpropagation in
order to compare it with the time-reversed version of the source
signal s(t).

The signal sA(t) is monitored in the time interval [0; 2tR].
The TR reconstruction of the source signal should occur at time
t = tR . We want to analyse the temporal symmetry properties
of sA(t) around time t = tR of the backward propagation.

We consider the Green function G(r, r′, t, t ′) of
the elastodynamics wave equation for a specific mode
of propagation in an unbounded elastic medium (either
longitudinal or shear wave propagation) written for the
potentials [59]. G is the solution to the scalar wave equation of
the type ((1/c2

i )(∂/∂t) − �)G(r, r′, t, t ′) = δ(r − r′)δ(t − t ′).
ci is the phase velocity of either the longitudinal or shear
wave propagation mode. ∂/∂t and � are, respectively, the
first-order partial time derivative operator and the Laplacian
operator in 2D space (x, y). The right-hand side term in
the equation represents a point-like source in space and
in time. Due to the hypothesis of a time invariant medium,
G(r, r′, t, t ′) = G(r, r′, t − t ′, 0).

We define GA,B(t, t ′) = G̃A,B(t − t ′) to be the Green
function of the medium from point B to point A, with a source
at B starting at time t = t ′, GA,B(t, t ′) = G(rA, rB, t, t ′) =
G(rA, rB, t − t ′, 0).

For example, in the case of a linear non-viscous fluid
unbounded medium, GA,B(t, t ′) = (1/4π‖rA − rB‖)δ(t −
t ′ −‖rA − rB‖/c), where ‖ · ‖ indicates the standard Euclidean
vector norm and c is the wave propagation speed in the fluid. In
the case of a solid medium, elastically isotropic or anisotropic,

5 We could consider also shear-mode transducers, that are sensitive only to
shear deformations. However, the basic issue we would like to underline
with this work is the fact that transducers commonly used in NDE procedures
are usually compressional or shear. In both cases part of the forward wave
propagation information is lost.

homogeneous or inhomogeneous, G̃A,B(t − t ′) assumes more
complicated forms [60].

sA(t) can then be calculated using the medium Green
function (propagator) [61],

sA(t) = (
G̃A,B(t ′) ∗t ′ s

−
B (t ′)

)
(t)

=
∫ +∞

−∞
dt ′G̃A,B(t − t ′)s−

B (t ′), ∀t ∈ [0; 2tR], (1)

where (· ∗t ′ ·)(t) indicates the convolution-in-time integral
function, evaluated at time t , of two signals, in this case the
Green function for the couple of points (rA, rB) and the time-
reversed signal s−

B (t).
Equation (1) can be rewritten as

sA(t) =
∫ +∞

−∞
dt ′′G̃A,B(t − t ′′)s−

B (t ′′ + tR)

=
∫ +∞

−∞
dt ′′G̃A,B(t − t ′′)sB(−t ′′), (2)

where the change in time variable t ′′ = t ′ − tR and hypothesis
(III) have been applied to equation (1). Note that this change
in time frame of reference implies that both the integration
variable t ′′ and the evaluation time t during the backward
propagation can assume values in the range [−tR; tR]. That
implies that the argument of the sB signal can be negative, in
the range [−tR; 0], and the retro-focal time is t = 0 in this new
temporal frame of reference.

Equation (2) can be rewritten as

sA(t) = (
G̃A,B(t ′) ∗t ′ sB(−t ′)

)
(t), ∀t ∈ [−tR; tR]. (3)

According to the first property shown in appendix B,
equation (B.4), sB(−t ′) can be written as

sB(−t ′) =
∫ +∞

−∞
dt ′′G̃B,A(−t ′ − t ′′)s(t ′′)

= (
G̃B,A(−t ′′) ∗t ′′ s(−t ′′)

)
(t ′). (4)

Then, equation (3) can be rewritten as

sA(t) = (
G̃A,B(t ′) ∗t ′ G̃B,A(−t ′) ∗t ′ s(−t ′)

)
(t),

∀t ∈ [−tR; tR]. (5)

Considering hypothesis (II) at the beginning of the section
(spatial reciprocity principle), equation (5) can be rewritten as

sA(t) = [(
G̃A,B(t ′′) ∗t ′′ G̃A,B(−t ′′)

)
(t ′) ∗t ′ s(−t ′)

]
(t),

∀t ∈ [−tR; tR]. (6)

In equation (6), the term within the round parentheses
corresponds to the definition of the auto-correlation function
of the Green function G̃A,B(t) (see property II in appendix B),
which is a symmetric function about t = 0 (see property II
in appendix B). Property IV in appendix B shows that the
convolution-in-time of two even functions gives as a result an
even function. Equation (6) defines the signal sA(t) as the
convolution-in-time of two signals symmetric about t = 0
(for initial definition, s(t) is an even function), then sA(t) is
symmetric about t = 0 too, i.e. it is symmetric about the retro-
focal time.

This demonstration is based only on the time domain
properties of the Green function of the medium derived from
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the three hypotheses stated at the beginning of the section, so
that it is generally valid independent of its spatial dependence.
It relies essentially on the same hypotheses sufficient to
show that the TRP realizes a spatial-temporal matched-filter
[2,5,54,62], focusing wave energy with maximum value at the
original source location and at the retro-focal time. However,
the realization of a spatial-temporal matched filter does not
guarantee the perfect realization of the TRP, i.e. the perfect
reconstruction in time and space of the forward propagation
source field. The demonstration developed here shows that at
least the temporal symmetry of the original source signal is
conserved by the TRP.

This result, obtained for the case of a point-like source in
A and a point-like TRM receiver in B, can be extended to the
case of sources and receivers with finite sizes. Indeed, consider
a source in a region RA (a 2D manifold embedded in 3D
Euclidean vector space R3). It emits a temporally symmetric
pulse around time t = 0. This produces a signal recorded
through a receiving region RB . Then re-broadcasting the TR
version of that signal from RB (now acting as a transmitter)
gives rise to a TR focused signal within the region RA. This last
signal is temporally symmetric about t = 0, which corresponds
to the retro-focal time.

In laboratory experiments, the electrical signal produced
by (compressional) transducers, e.g. in receiving mode, results
from the mean value of the surficial out-of-plane component
of the vector wave field (displacement or velocity) across the
transducer surface. For the transmitting mode, the electrical
signal induces a wave field in the medium (e.g. diagonal
component of the stress tensor field) whose normal partial
derivative is proportional to the TR of the received normal
component of the corresponding conjugated wave field (e.g.
normal component of the velocity vector wave field) [63–67].
As a consequence of the behaviour of real transducers in
receiving and transmitting modes, the transmitted wave field
from RA during the forward propagation can be calculated as
its mean value on RA. The same is valid for the received
wave field on RB . Then, under hypothesis (I) (linearity of the
medium), equation (6) can be rewritten using integration over
the regions RA and RB , such that the result is still valid. See
appendix C for the details.

4. Validation by numerical simulations

4.1. Setup

Figures 1(a) and (b) show the geometry and configuration
of two numerical simulations, performed in 2D. In both
cases, a specimen is selected with rectangular shape and sizes
Lx = 133.21 mm and Ly = 88.875 mm, the same geometry
of a 2D (diagonal) slice extracted from a 3D parallelepiped
solid used in the laboratory experiments (see section 5.1),
intersecting the positions of the actual transducers attached to
the 3D specimen (see figure 2 for its schematic representation).
Simulations are performed only in 2D in order to obtain a
preliminary validation of the robustness of TRA retro-focusing
in reconstructing the source signal, at the right spatial location
and with the right features (temporal symmetry), in a closed

Figure 1. (a) Schematic representation of the numerical simulation
setup in the case of a relatively large TRM transducer (compared
with the central wavelength of the wave fields). (b) Same setup for
the numerical simulation but for a small TRM transducer, in this
case the opposite face with respect to the previous case. Notice that
in both cases, the source transducer is positioned on the same side of
the specimen and has the same geometrical and physical
characteristics (length = 38 mm).

Figure 2. Schematic representation of the specimen (a quasi-cubic
glass block) used in the laboratory experiments, with one big source
transducer and two TRM transducers, one placed on the same lateral
face as the source and identical to it, the other one on the opposite
lateral face of the block and with smaller diameter. All the
transducers are piezo-ceramic circular disks. The small TRM
transducer has diameter = 4 mm.

solid. In a full 3D parallelepiped specimen with reflecting
boundaries, the TR reconstruction is expected to be improved
due to an increased mixing of the wave fronts’ paths (reflections
in 3D instead of 2D), as shown by the experimental results
in section 5.2. Increasing wave front mixing nearly leads to
ergodic/chaotic path dynamics (although not complete, in this
case, due to the selected specimen geometry) . This means
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an improvement of the retro-focusing properties of a single-
transducer TRM, as reported in [13].

The sample is a homogeneous isotropic solid with
Lamé’s constants λ = 75.1 GPa and µ = 31.2 GPa,
volumetric mass density ρ = 6.79 × 103 kg m−3 and
quality factor Q = 2 × 103. These parameters are derived
from experimental measurements of the longitudinal phase
velocity, amplitude attenuation coefficient and mass of the
parallelepiped doped glass specimen used in the laboratory
experiments (see section 5.1).

The two Cartesian components, u(r, t) (x-axis) and v(r, t)
(y-axis), of the displacement vector wave field (u(r, t)) are
calculated in the plane of the rectangle solving the 2D partial
differential equation problem consisting of the elastodynamic
wave equation, the boundary conditions and the initial
conditions. The 2D elastodynamic wave equation can be
written in the vectorial form, in terms of the displacement
vector wave field u(r, t):

ρ
∂2u
∂t2

= (λ + 2µ) · �∇( �∇ · u) − µ �∇ ∧ �∇ ∧ �∇u, (7)

where · indicates the standard Cartesian (dot) product between
vectors, ∧ the external (cross) one and �∇ is the 2D vectorial
differential operator with components (∂/∂x, ∂/∂y).

Free boundary conditions are applied, in both simulations,
for three of the four sides of the rectangular specimen, S1, S2,
S3, which are the sides lying on y = 0, x = 0, y = 88.875 mm,
respectively. These conditions are expressed as follows:

εij (r, t) = 0, ∀i, j = 1, 2, ∀t > 0 and

∀r ∈ S1 ∪ S2 ∪ S3, (8)

where ∪ indicates the union set operation and εij (r, t) are the
components of the linear strain tensor wave field under the
approximation of small deformations, defined as



ε11(r, t) = ∂u

∂x
(r, t),

ε22(r, t) = ∂v

∂y
(r, t),

ε12(r, t) = 1

2
((∂u/∂y) + (∂v/∂x))(r, t),

ε12(r, t) = ε21(r, t),

(9)

the last row stating the symmetry property of the strain tensor
field.

Fixed boundary conditions are applied in each simulation
to the remaining side of the specimen, S4, along the vertical
line x = 133.21 mm, imposing

u(r, t) = 0, ∀t � 0 and ∀r ∈ S4. (10)

In both simulations, the initial conditions are

u(r, t = 0) = 0, ∀r. (11)

An additional boundary condition consists in the
simulated source transducer, implemented as a segment of
length LTR = 38 mm, lying on the y = 0 axis (S1 side of

the specimen), with centre in the position (91.0;0.0). In this
part of the boundary, within a limited time interval [0; tf ]

v(x, y = 0, t) = s(x, t)

= −S exp

[
−0.5

(
x − x0

σx

)]
exp

[
−0.5

(
t − t∗

σt

)]

× sin(2πf · (t − t0)) · H(t − t0) · H(tf − t). (12)

Equation (12) represents the injection into the specimen
of the y component of the displacement vector (compressional
transducer). The temporal evolution is modelled as 3.5 cycles
of a sine wave signal with amplitude modulated by a Gaussian
profile and frequency f = 200 kHz. In equation (12),
S represents the maximum value of the amplitude, t0 = 0.5 µs
is the initial time for the pulse, tf = t0 + (3.5/f ) = 18 µs is
the final time of injection, t∗ = t0 + (1.75/f ) = 9.25 µs is the
centre of the Gaussian envelope for the amplitude of the pulse,
σt = (0.4/f ) = 2 µs is the standard deviation of the Gaussian
envelope, H(t) is the Heaviside step function, x0 = 91 mm
and σx = 8 mm. Figure 3(b) shows the waveform.

In equation (12) there is also a multiplication term of
the form of a Gaussian envelope along the spatial x-axis
introduced as a modulation term along the extension of the
simulated transducer. The function is centred on the centre
of the transducer, x0 = 91 mm. The spatial modulation for
the amplitude of the source signal is introduced in order to
simulate the effective active region of the source transducer.
Indeed, actual measurements show that the active region does
not correspond to the full surface [68, 69] due to the fact
that the source transducer is large compared with the central
wavelength of the source pulse (λ = 22.5 mm).

The initial-boundary value differential problem defined
by equations (7) and (8) and (10)–(12) is solved numerically
through a finite difference time domain (FDTD) computational
code based on the local interaction simulation approach
[70–73], a method specifically designed to the solution of
elastodynamics problems using a common theoretical and
algorithmic framework independent of the complexity of
the material (linear or nonlinear elastic, homogeneous or
highly heterogeneous). The discretization step of the mesh
is �ε = 0.1125 mm, corresponding to about 200 nodes per
central wavelength. The time step used is τ = 0.02 µs.
The convergence of the finite difference code is based upon
satisfying the Courant–Friedrichs–Lewy [74] criterion. Its
stability has been proven elsewhere [75, 76] for similar case
studies with a similar high number of spatial lattice nodes per
central wavelength.

The displacement vector wave field u(r, t) thus calculated
is recorded during the forward propagation stage along the line
representing the TRM transducer, now acting as a receiver.
In the two different simulations, the TRM receiver is located
in different positions (opposite sides of the specimen) and
has distinct sizes. Figure 1(a) shows the configuration
of the simulation with an extended 1D TRM transducer
with length LTR = 38 mm, its centre being placed at the
point with coordinates (32.0;0.0) mm. Figure 1(b) shows
the configuration for the second simulation, identical to the
first one except for the TRM transducer, where the length

6
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Time [µs]

Time [µs] Time [µs](a) (b)

Figure 3. (a) Spatial-average along the source transducer length of the horizontal (x) and vertical (y) components of the displacement
vector wave field recorded during the simulated forward propagation. Top: horizontal component (〈u〉x(t)). Bottom: vertical component
(〈v〉x(t)). (b) Time series of the spatial-average of the vertical component (〈v〉x(t)) of the displacement vector wave field across the source
extension, (〈v〉x(t)), during the injection, shown in order to visualize the temporally symmetric displacement source signal applied to that
part of the specimen boundary.

LTR = 4 mm and the centre is positioned at (32.0;88.875) mm,
on the opposite boundary.

A time window (called TR window) is extracted excluding
the time onset corresponding to the time of flight from
the source line to the receiving line. The portion of the
received v wave field in this temporal interval is time reversed,
spatially averaged along the extension of the transducer
and used as input for the backpropagation. We use this
procedure in order to take into account the typical averaging
effect occurring during the transducer detection process that
generates the electrical signals at the transducers. It is a first-
order approximation for modelling a piezo-electric transducer
as a baffled planar piston [64–67].

4.2. Results

Figure 3(a) shows the spatially averaged horizontal (x) and
vertical (y) components of the displacement vector field
recorded at the line source during the forward propagation.
The two displacement signals are indicated as 〈u(x, y =
0, t)〉x(t) and 〈v(x, y = 0, t)〉x(t), respectively, where 〈〉x
indicates spatial averaging along the x−axis. Figure 3(b) is
a close-up of the source waveform. The time length of the
forward propagation simulation is approximately �tsimul =
1500 µs, long enough for obtaining sufficient sampling of
the medium space by the multiple reflected wave fronts.
After the injection, the source line becomes passive. The
multiple reflections can be seen (see figure 3(a)) after about
250 µs: the signal observed at the source location becomes very
complicated, due to interference effects among the different
reflected signals. As a consequence of non-ergodicity, in
both numerical simulations the single element TRM is not
able to encode all the information regarding the reverberant
wave fronts inside the cavity, as reported in figures 4 and 5,
respectively for the two simulations.

Figure 4. Received signal at the TRM transducer during the forward
propagation. Simulation with a large (length = 38 mm) TRM
transducer. Top: horizontal (x) component of the displacement
vector wave field calculated as its spatial-average along its length
(〈u〉x(t)). Bottom: vertical (y) component of the same vector wave
field (spatial-average of, 〈v〉x(t)).

We note that during and after the source injection, the
displacement vector wave field acquires a horizontal (x-)
component due to the Poisson effect. This component is
not recorded by the compressional-mode transducers. This
is another source of information loss. In both simulations, the
TRM transducer re-broadcasts only the time-reversed version
of the space-average vertical component of the displacement
vector wave field.

Figures 6(a) and 7(a) report the backpropagation results
regarding the spatially averaged vertical component of the
displacement vector wave field (〈v〉x(t)) across the location
of the original source. The temporal axis of both figures is
redefined such that t = 0 corresponds to the retro-focusing

7
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Time [µs]

Time [µs]

Figure 5. Received signal at the TRM transducer during the forward
propagation. Simulation with a small (length = 4 mm) TRM
transducer. Top: horizontal (x) component of the displacement
vector wave field calculated as its spatial-average along its extension
(〈u〉x(t)). Bottom: vertical (y) component of the same vector wave
field (spatial-average of, 〈v〉x(t)).

time. Meaning, the time at which the maximum peak
amplitude of the source signal is recreated.

In both experiments, the TR time window ends at
t = 1499 µs but it starts at t = 10 µs and t = 24 µs for the case
with the large TR transducer and the case with the small one
respectively. This difference is due to the respective positions
on the boundaries of the specimen. The full signal, including
the coda, i.e. the part due to the multiple reflections inside the
specimen, is used for TR in both experiments.

As shown in figures 6(a) and 7(a), a higher amplitude
waveform appears at the focal time. Figures 6(b) and 7(b)
show that those waveforms are similar to the original source
signals and are relatively symmetric around the focal time.
In the two cases, different losses of information from the
forward propagation occur. With the big TRM transducer,
more information about the forward propagating waves is
collected but it is lost due to the spatial averaging process.
With the small TRM transducer, less space on the boundary is
covered, so it collects less information about the incident wave
fields.

However, in both cases the received waveform is in good
agreement with the source. The TR window length proves
to be long enough to achieve the retro-focusing6. In both
cases, the reconstructed source signal at the source location
has a smaller amplitude than the original due to the space-
averaging effects of the transducers, to their finite size and
to the attenuation within the medium acting like a spatial
frequency filter during the propagation [54]. As discussed in
section 1, this degrades the retro-focusing process. At about
8.75 µs post retro-focusing time, the TR backward propagation
stage of the experiment is complete. In absence of an acoustic
sink [6, 14], the interference of the incoming backward waves

6 Additional simulations we run have proved that either increasing the number
of TRM channels or the length of the TR window does not lead to a significant
change in the retro-focusing quality (results not reported for brevity).

(a)

(b)

Time [µs]

Time [µs]

Figure 6. (a) Retro-focused signal at the original source location
calculated as the spatial-average of the vertical (y) component of the
displacement vector wave field (〈v〉x(t)). The time axis has been
shifted in order to have 0 as the retro-focal time. (b) Close-up
around the retro-focal time of the same time series. Numerical
simulation for the case with the large TRM receiver.

at the original source location gives rise to their outward
scattering such that new forward propagation commences.
This process is due to diffraction: the energy associated with
the incoming backward waves is not re-absorbed at the focus
and it is therefore scattered in the form of diverging waves.

Figure 8 shows a grey scale plot of the norm of the
displacement vector wave field (||u(r, t)||) at time t = 9.00 µs,
at the time the peak of the source signal is going to be
injected into the medium during the forward propagation.
Figures 9 and 10 show the same type of plot for the
backpropagated wave field, close to the time of retro-
focusing for the two cases (large and small TRM transducers,
respectively). From figure 9 it is clear that the largest
amplitude is localized at the original source, meaning that
constructive interference occurs mostly in that region of the
specimen. The same result is obtained in the case with the
small TRM transducer as shown by figure 10. However,
figure 10 shows a clearer focus at the source location, while
in the previous case one can see from figure 9 that more
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(a)

(b)

Figure 7. (a) Retro-focused signal at the forward propagation
source location calculated as the spatial-average of the vertical (y)
component of the displacement vector wave field (〈v〉x(t)). The
time axis has been shifted in order to have 0 as the retro-focal time.
(b) Close-up around the retro-focal time of the same time series.
Numerical simulation for the case with the small TRM receiver.

elastic energy is redistributed about the medium. The source
directivity plays an important role as well, re-distributing
the energy significantly in contrast to the forward propagation.
This is an important issue.

5. Validation by laboratory experiments

5.1. Setup

Figure 2 shows a schematic representation of the 3D specimen
used in the laboratory experiments along with the approximate
locations of the source transducer (near the lower right corner
of the frontal face), the large TRM transducer (near the top
left corner of the frontal face) and the small TRM transducer
(opposite face). The size of the specimen is 88.875 mm ×
88.875 mm ×99.2 mm and its total mass is M = 4.90 kg. The
physical parameters of the specimen modelled in the numerical
study derive from measurements on this sample.

In both experiments, a source signal of the same type
as that used in the simulations described in section 4.1

Figure 8. Greyscale plot of the norm of the displacement vector
wave field during the simulated forward propagation at time
t = 9 µs since the beginning, at the time when the peak of the
source signal is going to be injected into the medium (it exactly
occurs at t = 9.25 µs). See additional material for the movie of part
of the simulation of the forward propagation. A movie version of
this figure is available at http://stacks.iop.org/JPhysD/41/085415.

Figure 9. Greyscale plot of the norm of the displacement vector
wave field during the simulated TR backpropagation calculated just
after the TR focusing time. Case with the large TRM transducer.
See additional material for the movie of part of the simulation of the
TR backpropagation. A movie version of this figure is available at
http://stacks.iop.org/JPhysD/41/085415.

(see equation (12)) is considered, 3.5 cycles of a sine wave
with central frequency f = 200 kHz, amplitude modulated
in time by a Gaussian profile and pulse-width in time equal
to 16 µs, resulting in a temporally symmetric pulse around
t = 8 µs (t0 = 0 µs). The transducers used are piezo-ceramic
compressional mode, PZT 5 type, with thickness of 2 mm,
the large ones with diameter of 38 mm were produced by
APC International Ltd., while the small one with diameter of
4 mm was manufactured by Boston Piezo-Optics Inc. The
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Figure 10. Greyscale plot of the norm of the displacement vector
wave field during the simulated TR backpropagation calculated just
after the TR focusing time. Case of the small TRM transducer. See
additional material for the movie of part of the simulation of the TR
backpropagation. A movie version of this figure is available at
http://stacks.iop.org/JPhysD/41/085415.

transducers only apply vertical (y-component) displacements
to the specimen surface (v(x, y = 0 or y = 88.875 mm, t)).
The single channel TRM apparatus used is similar to the one
described in figure 3 of [18].

Both TR source reconstruction experiments follow the
same procedure described for the simulations. The large source
transducer emits the source signal that produces propagating
wave fields recorded by the TRM transducer (located in two
different positions for the two respective experiments) using a
TR window of duration 1640 µs. This time interval excludes
the initial interval before the first arrival and guarantees
sufficient mixing of wave fronts multiply reflected at the
boundaries. That signal is time reversed and re-injected into
the specimen and the resultant signal is recorded at the original
source transducer.

5.2. Results

Figures 11(a) and 12(a) show the time series for the vertical
component of the displacement vector wave field (〈v(x, y =
0 mm, t)〉x(t)) at the original source location, for the large
and the small TRM transducers, respectively. A high pass
filter is applied to the retro-focal signal of the large TRM
transducer case, filtering out the frequencies below 120 kHz.
In fact, the large TRM transducer has a resonance frequency of
about 75 kHz, producing a significant time lengthening of the
re-broadcast signal, whereas the small transducer has much
higher resonance frequencies. Both figures show that the
original waveform of the source is not perfectly reconstructed.
However, both TR focused signals have a high degree of
symmetry around the focal time, defined to be at t = 0 µs.
Figures 11(b) and 12(b) present a close-up of the same signal
of figures 11(a) and 12(a), respectively, about the focus time.

(a)

(b)

Figure 11. (a) Retro-focal signal at the forward propagation source
location. The time axis has been shifted to 0 as the retro-focal time.
(b) Close-up around the retro-focal time. Experimental results for
the case with the large TRM receiver.

They show a high level of symmetry for a time interval of
±20 µs about the focal time7.

The lack of exact agreement between the source and the
retro-focal waveforms is due to the attenuation of the medium
(small but not absent), to the effects related to the elastic wave
propagation (mode conversion at the boundaries and single-
mode transducers), to the nearby boundary reflections and
to the TRM transducer ringdown. However, in both cases,
the time symmetry about t = 0 µs of the TR reconstructed
source signal still holds, without significant dependence upon
the TRM transducer size, though the experimental limitations
depart from the ideal conditions under which the conservation
of symmetry was theoretically proved in section 3. In addition,
the quality of the reconstruction of the source signal is higher
with the 3D laboratory specimen than with the 2D simulated
one, as a consequence of increased wave front mixing going
from 3D to 2D (see section 4.1).

6. Discussion and conclusions

In this paper, we investigate the roles of finite-size single-
mode piezo-ceramic transducers bonded to the surface of
a solid specimen in TR reconstruction of a temporally
symmetric source. We intentionally choose to perform TR
source reconstruction numerical simulations and laboratory

7 Note that the amplitudes of the time series displayed in figures 11 and 12 are
not significant relative to each other because different amounts of amplification
were applied in each TR backpropagation to maximize signal-to-noise ratio.
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(a)

(b)

Figure 12. (a) Retro-focal signal at the forward propagation source
location recorded during the TR backpropagation. The time axis has
been shifted to 0. (b) Close-up around the retro-focal time.
Experimental results for the case with the small TRM receiver.

experiments using a simple and limited configuration for a
TRA experiment, i.e. using only one TRM transducer in a
specimen that does not produce chaotic and ergodic wave
front path dynamics. A sufficiently long TR window length
guarantees retro-focusing with only one TR transducer due
to the multiple reflections at the boundaries. We use this
configuration because practical applications of TRA to NDE
may have these limitations. For example, this type of single
channel TRM setup has been used in an experiment for
the location and characterization of a surface crack in a
solid specimen, taking advantage of its nonlinear scattering
behaviour for distinguishing it from another type of defect like
an inhomogeneity [18].

Led by a theoretical analysis of a gedanken TRA
experiment and by laboratory investigation in solids in general,
we conduct the single element TRM source reconstruction
simulation and experiment changing the size of the TRM
transducer.

The results of both the numerical simulations and the
laboratory experiments show that the retro-focusing process
is robust despite using a single TRM transducer, based on
the temporal symmetry around the focal time. There are
significant differences between the two cases, as evidenced
by the comparison between figures 9 and 10: with the large
transducer the focus is less clear and energy is significantly
redistributed about the sample during backpropagation. This

result is due to the large diameter of the TRM transducer
compared with the central wavelength. By extension, we infer
that for transducer diameter greater than the central wavelength
in general, energy redistribution in the backward propagation
will be significant. However, spatial reciprocity is not violated.

Despite the loss of information, the TR process
nonetheless conserves one important property of the source
signal, its symmetry in time. The results suggest that one
criterion for evaluating the quality and robustness of TRA
experiments in solid media consists in calculating the level
of symmetry around the retro-focal time, point by point, in a
specimen.

Acknowledgments

This work was supported by Institutional Support (LDRD) at
the Los Alamos National Laboratory. M Griffa acknowledges
collaboration with the Bioinformatics and High Performance
Computing Lab of the Bioindustry Park of Canavese,
Colleretto Giacosa (Torino), Italy, the discussions with D
Pasqualini and P P Delsanto and the help of M Scalerandi
and A Gliozzi with the 2D LISA FDTD computational code.

Appendix A. Attenuation and the TRP in solid media

As cited in section 1, in the case of attenuative media
the symmetry property of the wave equation is no longer
valid. However, the TRP still holds but with decreased
efficiency: part of the spatial frequencies associated with the
forward propagating wave fields never reach the TRM due to
dissipation. The backpropagated wave fields still retro-focus
on the position(s) of the source(s) and/or point-like scatterer(s)
from the forward propagation. The retro-focusing occurs also
onto extended scatterers as long as they can be described as a
collection of independent point-like scatterers. It takes place
automatically since all the information about the positions of
the sources is encoded in the signals themselves as recovered
and recorded during the first stage [1].

From a signal processing point of view, this property
is consistent with the demonstration of the TRP being a
realization of the spatial-temporal matched filter to the set
of the medium’s Green functions from each TRM element to
the original source/scatterer location [2, 6, 54, 62]. The basic
principle of determining the matched filter for a linear system
with a certain impulse response function consists of finding the
right input signal in order to maximize the output of the system
with respect to that response function. The demonstration
only relies on the hypotheses of a linear elastic medium, the
validity of the spatial reciprocity principle and the invariance
in time of its properties. Thus, it is also valid for the TRP in
attenuative media. However, a matched filter does not imply
any constraint to the output signal off the matched location
in space and time. That is where the attenuative properties
of the medium strongly affect the retro-focusing process and
therefore the reconstruction of the original source, changing
the side lobes of the focusing profiles both in time and space.
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Appendix B. Properties of convolution-in-time
integrals

Appendix B.1. Property I

Given the definition of the signal created at the location rB

during the forward propagation by the source signal s(t) at rA,

sB(t) = (
G̃B,A(t ′) ∗t ′ s(t

′)
)
(t)

=
∫ +∞

−∞
dt ′G̃B,A(t − t ′)s(t ′), (B.1)

its time-reversed version can be written as

sB(−t) =
∫ +∞

−∞
dt ′G̃B,A(−t − t ′)s(t ′). (B.2)

Making the change in time variable t ′ = −t ′′, equation (B.2)
can be rewritten as

sB(−t) =
∫ +∞

−∞
dt ′′G̃B,A(−(t − t ′′)s(−t ′′)). (B.3)

The expression on the right-hand side of equation (B.3) is
equivalent to

sB(−t) = (
G̃B,A(−t ′) ∗t ′ s(−t ′)

)
(t). (B.4)

Appendix B.2. Property II

The auto-correlation function of a signal represented by a
real-valued function f (t) can be expressed in terms of the
convolution-in-time product of the function and its time-
reversed version. Indeed, the auto-correlation function of f (t)

is defined as

AC[f ](t) ≡
∫ +∞

−∞
f (t ′)f (t ′ + t) dt ′. (B.5)

Making the change in time variable t ′′ = t ′ + t inside the
integral in equation (B.5) leads to the following definition:

AC[f ](t) =
∫ +∞

−∞
f (−(t − t ′′)f (t ′′) dt ′′. (B.6)

Equation (B.6) corresponds to

AC[f ](t) = (
f (t ′′) ∗t ′′ f (−t ′′)

)
(t). (B.7)

Appendix B.3. Property III

The auto-correlation function of a signal f (t) is an even
function.

We calculate AC[f ](−t):

AC[f ](−t) ≡
∫ +∞

−∞
dt ′f (t ′)f (t ′ − t). (B.8)

Then, we introduce in the integral of equation (B.8) the change
in time variable t ′′ = t − t ′ that leads to

AC[f ](−t) =
∫ +∞

−∞
dt ′′f (t − t ′′)f (−t ′′). (B.9)

Another change in temporal frame of reference, t ′′ = −t ′′′,
leads to

AC[f ](−t) =
∫ +∞

−∞
dt ′′′f (t + t ′′′)f (t ′′′) = AC[f ](t).

(B.10)

Appendix B.4. Property IV

Given two even functions a(t) and b(t) representing two
signals symmetric about t = 0, their convolution-in-time is
still an even function:

(a(t) ∗t b(t))(−τ) =
∫ +∞

−∞
dt ′a(−τ − t ′)b(t ′). (B.11)

Considering that a(−τ − t ′) = a(τ + t ′) and applying the
change in variable t ′ = −t ′′ in the integral of equation (B.11):

(a(t) ∗t b(t))(−τ) =
∫ +∞

−∞
dt ′′a(τ − t ′′)b(−t ′′). (B.12)

Then, considering that b(−t ′′) = b(t ′′), it results that

(a(t) ∗t b(t))(−τ) =
∫ +∞

−∞
dt ′′a(τ − t ′′)b(t ′′)

= (a(t) ∗t b(t))(τ ). (B.13)

Appendix C. Calculations regarding finite-size TRM
transducers

In the case where the source A of the forward propagation
is point-like, located at rA, and B is a finite-size TR receiver
covering a region (surface) RB , the same procedure leading to
equation (6) is valid and equation (6) can be simply rewritten
as

sA(t) = 1

V 2
RB

∫
RB

drB

∫
RB

dr′
B

[
(G(rA, rB, t ′)

∗t ′G(rA, r′
B, t ′)) ∗t ′ s(−t ′)

]
, ∀t ∈ [−tR; tR],

(C.1)

where G̃(rA, rB, t − t ′) is the Green function for the medium
evaluated at time t at the position rA for a source at rB emitting
at time t ′, G̃(rA, rB, t−t ′) = G(rA, rB, t, t ′),

∫
RB

drB indicates
the integration over region RB and VRB

is the Euclidean
measure of the manifold (surface area) RB . Equation (C.1)
is obtained from equation (6) applied to each point of RB and
using the principle of linear superposition. The same result
from equation (6), i.e. the fact that sA(t) is symmetric about
t = 0, is then valid in the case of the mean value over RB of
the wave field received on RB and re-broadcast from it.

More generally, the symmetry property of sA(t) still
holds also for the case of A having finite size covering a
region RA, the same type of procedure being used in order to
calculate the mean value of the emitted and received wave field
from/on RA.
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