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Recent studies show that a broad category of materials share “nonclassical” nonlinear elastic
behavior much different from “classical’(Landau-type nonlinearity. Manifestations of
“nonclassical” nonlinearity include stress—strain hysteresis and discrete memory in quasistatic
experiments, and specific dependencies of the harmonic amplitudes with respect to the drive
amplitude in dynamic wave experiments, which are remarkably different from those predicted by
the classical theory. These materials have in common soft “bond” elements, where the elastic
nonlinearity originates, contained in hard matterg., a rock sampleThe bond system normally
comprises a small fraction of the total material volume, and can be locdkzgda crack in a soljd

or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated
as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements
(graing, which make up the hard matrix. Calculations are performed in the framework of the local
interaction simulation approachISA). Experimental observations are well predicted by the model,
which is now ready both for basic investigations about the physical origins of nonlinear elasticity
and for applications to material damage diagnostics. 2@3 Acoustical Society of America.
[DOI: 10.1121/1.1570440

PACS numbers: 43.25.Dc, 43.25.Gf, 43.25[B4FH |

I. INTRODUCTION monic versus cubic in the classical c&s@nother striking

In the last decade, numerous studies of a diverse class (f)(?ature Biserved ir_1 the nonglas;icf:ell nonlinear_dyrnlgmic re-
materials such as earth materials, cement products, concret@©NSe Of nonclassical materials is “slow dynamics,”i.e., the
composites, etc., have shown that their elastic nonlinear b&/OW recovery of the linear material propertiesavespeed
havior is significantly different from the classical nonlinear @nd attenuationafter a sample has been subjected to a
behavior found in “ordinary” materials, such as gIasses,fOfC&L9
single crystals, and numerous oth&ts Despite their very Nonclassical nonlinear effects are believed to be due to
different structural and chemical properties, these materialthe presence of soft regions in hard materi@sy., micro-
share the same nonlinear elastic signatures that can be obracks, flat pores and soft bonding regions between grains in
served in both quasistatic and dynamic experiments. In tha granular material They have been successfully reproduced
following we shall say that these materials display “nonclas—by a model proposed by Holcombe and, later, by Guyer and
sical” nonlinearity, while the “ordinary” materials, which McCall.X° based on a Preisach—Mayergdf?M) space rep-
obey the traditional nonlinear theory of Landawshall be  (osentation, in analogy with the treatment of magnetic hys-

caIIe_I(_dh C|faSS(}::C<’:1| n?r}llnﬁar. teristic of lassical eri }eresis. Such a model provides a simple phenomenological
e fundamental characteristic of nonclassical material o . :

o S . . dfescrlptlon of the complex elastic behavior of an elementary
behavior in quasistatic experiments is the appearance o

stress—strain hysteresis and discrete merfhddjiferences elastic unit in the composition of an arbitrary material. Each

between nonclassical and classical nonlinear dynamic behaMt 1S described by an elementary constitutive law that ac-

ior include: a downshift of the resonance frequency, proporcounts for effects such as nonlinearity, hysteresis and end-

tional to the resonance amplitude in the nonclassical cageoint memory. The collection of all units, each of them with
versus a quadratic amplitude dependence in the classicHl€eir particular constitutive relations, yields the so called
case; nonlinear attenuation versus amplitude independent &PM space,” which characterizes the material specimen and
tenuation; quadratic amplitude dependence of the third hacan be used to predict the static mechanical behavior of rocks
in agreement with macroscopic observations. In the case of

dAuthor to whom correspondence should be addressed; electronic maif:.lylnamIC prOb!emSj Van De'n Abeedt al." used a quasiana-
scalerandi@polito.it lytical approximation of this model for homogeneous and
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implemented numerically in the LISA framework to simulate
the influence of the local nonlinear elastic properties on the
one-dimensional dynamic wave propagation in nonclassical
materialst’ To our knowledge, this is the only study to date

/ ' that explicitly incorporates a macroscopic simulation of dy-
@ . o namic nonlinearity and hysteresis.
grain HEU Interstice One of the drawbacks of numerical simulations is the

difficulty of insuring the convergence and stability of the
solutions. In this work, we propose a modification of the
micromechanical properties of the individual units, as sug-
gested in previous papel$ providing both an alternative
physical description of the elasticity of the bond system and
a more stable numerical treatment.

In Sec. Il, we define for each unit the nonanalytical con-
stitutive law provided by the model used as input for the
LISA simulation. The main difference with the model of
Guyer and McCalf is that the units, which represent the
S interstices between grains, are elastic and therefore not re-

stricted to only two strain statg$open” and “closed”). In
o : = Sec. Ill, a generalization of the spring motfdk introduced
(1) roor (+1y for the simulation of the propagation of ultrasonic waves in
(©) classical materials, with both rigid and nonrigid interfaces.
The approach is then extended to the treatment of nonclassi-
_FIG. 1.(a) Reprgzsentation of a specimen bar v_vith grains and inters_ﬁb}as; cal nonlinearities.
its 1D schematic representatioft) representation of the forces acting on . . -
the two subnodes delimiting an interstice. In order to illustrate the applicability of the model, we
focus our attention on simulations of a resonant bar experi-
ment(Sec. IV) and show that our model is capable of repro-
ducing all of the observed nonclassical nonlinear features.

v

®) 50

isotropic nonlinear media to evaluate the influence of hyster
esis on the propagation of longitudinal waves.

Analytical approaches significantly simplify the problem
but may not succeed in reproducing the whole set of ob-
served phenomena. Application of numerical calculations
can serve as an alternative for a more complete theoretic@ll, CONSTITUTIVE RELATIONS
analysis, including the extension of a basic one-dimensional
model to higher dimensions. Computer models based on a Let us consider a sample of a multigrained material, as
microscopic approach, such ak initio calculations and mo- shown in Fig. 1a). For simplicity, we assume that grains are
lecular dynamic techniqu&sare commonly used and allow, homogeneous and that the distance between two grain cen-
for instance, the understanding of atomic-scale effects antkrs isL when no pressure is applied to the bar. Likewise we
material behavior under applied stres§es$iowever, such assume that, initially, all the interstices between grains have
methods are often of no practical use because of the hugke same lengt(®><L. The bar may then be represented by
CPU time required, even for simulations over a relativelythe 1D lattice sketched in Fig.(): a sequence of elastic
small number of atoms. Therefore, a bridging between a miportions separated by soft interstice regions. The latter can be
croscopic and a macroscopic description is extremely usefuthought of as the bond system between the grains. In the

In wave propagation applications, Delsaetoal 14 pro-  following we will call the combination of elastic grain and
posed an approach for numerical simulations of macroscopimterstice elastic uni€EU) or lattice cell.
wave phenomena in complex heterogeneous media by intro- In the PM space modéf,the interstice regions can exist
ducing localized features at the mesoscopic to microscopionly in two states: open or closed. In the open state the
scale. The approach is based on the local interaction simulanaterstice has a lengthh,. When the pressure on the inter-
tion approachLISA)*® in conjunction with a spring modéf.  stice increases, it behaves rigidly and remains at the length
A very important feature of LISA is, as its name implies, the §; up to a certain pressure.. At this pressure level, the
capability of implementing at the local level even very com-interstice instantaneously closésfinitely soft elasticity for
plex mechanisms, which would be difficult to include in a an infinitesimal short time and assume the lengtl,
partial differential equation. In fact the method allows full (=< &y). Upon further increase of pressure, the interstice con-
freedom in the choice of interaction between the nodesinues to behave rigidly, this time with length.. When
which represent the boundaries of the material cells. decreasing the pressure, the interstice remains at its légth

It is also possible, by splitting the nodes at the interfaceslown to a pressure levély(<P.), where it instantaneously
between different material components into “subnodes,”opens, and remains at the lengthupon further decrease of
each related to a different component, to include all kinds othe pressure. The grains are considered to be purely elastic,
microscopic-to-mesoscopic scale features. Such a model waspresented by a modulusy. The corresponding stress—
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FIG. 2. The micromodel of Guyer and McC&Ref. 10 illustrating the stress—strain behavior of a typical lattice cell composed of an elastic unit and a
nonclassical interstice. The grains are purely elastic, the interstices display jump and hysteresis phenomena. Apart from two geometrid Iparzahastr

see Fig. 1, lattice cells are represented by four “elastic” parameters: the elasticity of the dfginghe opening and closing pressuRgandP., and the
elementary length chang®— 6. . The total strain on a lattice cell can be calculated by a series interaction. A statistical ensemble of such cells represents a
microinhomogeneous material.

strain relations are shown in Fig.(&e consider the straia  behavioj except atP, and P.. For completeness, we also
to be positive if the length is decreasing, and pressure iglustrate in Fig. 2 the elastic response of a single lattice cell,
considered positive in compression, negative in tensibime  both for Py# P, (hysteretic jump celland for Py=P, (re-
pairs (Po,P.) have generally different values for each inter- versible jump cell° Apart from two geometric parameters
stice. (L and 6y, lattice cells in this model are thus represented
The residual modulus of a lattice c&lle can be calcu- by four “elastic” parametersKy, Py, P, and .
lated as follows: For numerical simulations, the appearance of jumps in
the state equation, i.ei, the interstice length, may cause
1 problems of convergence and stability. Also, from a physical
point of view, discontinuities in a physical parameter are
unrealistic. ldeally, it would be most satisfactory to describe
the elastic behavior by means of smooth analytic functions.
As an example, the expressions

1 1
e T (1)
Kcell Kg KI

whereK; is the interstice modulus, which is infinityigid
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P P+Pgy—xIn[cosiH(P—Pg)/ P—-P
P P+Po” xInlcosHP—Polix)] 1+tan|‘( 0) it P>0,
6:
P  P+Py—xIn[cosi(P—Pgy)/ P.—P P-P
L o—xIn[ H( o) X)]+(K+( c 0))(1+tan?‘( o)) if P<0
Kg 2K| K| X

yield the elastic stress-strain behavior of the lattice cell illus-The sudden decrease in stréincrease in lengthof the lat-
trated in Fig. 3, i.e., describes the hysteresis loop. Here, #ce cell atP, amounts to P.— Py)/K,. The corresponding
total of six “elastic” parameters are involvedy, K;, P, stress—strain behavior of the elastic unit, the interstice ele-
P¢, x, andy. K, introduces a difference in elasticity modu- ment and the total lattice cell are shown in Fig. 4. As in the
lus before and after the hysteretic open-closure pressuigase of the original PM space model, the micromechanical
range; « reflects the magnitude of the jump in strainBt  pehavior can be described by piecewise linear functions. If
and y takes into account the smoothness of the transitions g5 —p_, we talk of a reversible elastic uniREV). If P,
Pc andP,. The PM space of Ref. 10 can be reproduced ingitfers from P,, we use the term hysteretic elastic unit
the limit of K, — and =0, i.e., when there is no change in (HEU).
the elasticity modulus before and after closure, and the clos-
ing and opening are instantaneous in pressure.

However, since we are treating the bond system as so

The new representation is an alternative model to the
M space model for a possible nonclassical physical mecha-

ism. Of course, the choice of the protocol for the state vari-

|ncl_u5|ons, it is reasonable to assuges Nat the modulus of Zole should be dictated by the physical processes involved in
lattice cell alters when the elastic features change stateﬁﬁe propagation at a microscopic lev@tork in progress

Therefore, it seems appropriate to retain the interstice soft- . .
owever, the simple phenomenological protocol used here

ness parametd{, at a value different from infinity. In order _ !
to limit the number of free parameter values to four, as in thealready yields satisfactory results. It also has the advantage

original PM space model, we put=y=0. In doing so, we of eIimingting the dis.continuiti'es of .the' 'physical parametgr
have adjusted the micromechanical properties of the bonlY "€Placing them with two discontinuities of a state vari-
elements, introducing a state variable which rules the inter2Pl€ to be defined in the next section. This is important for
stice elastic properties. Instead of opening and closing dishe stability and convergence of the simulations. In the fol-
continuously in pressure, the interstice element behaves liioWing section, we implement this type of elastic behavior in
early elastic, with moduluk’=s©/LOK,, up to the the framework of the local interaction simulation approach
pressureP,. At that pressure level, the element becomesLISA). However, the LISA approach can be applied to
rigid (infinite modulug, and it remains rigid for all pressures evaluate the macroscopic dynamic response of systems with
above. When decreasing the pressure, the interstice remaif8y type of local nonclassical nonlinear elasticityn the

at a fixed length down to a pressure le®yj, where it in-  present paper, first we consider the case of “classical phase”
stantaneously opens and continues afterwards to increase itterials with completely rigid bonds, then we introduce lin-

length according to Hooke’s law, early elastic bonds, and finally we implement the case of
50 bonds with the assumed nonlinear elasticity, in order to de-
€= _ 5: E 3) scribe the macroscopic dynamic behavior of nonclassical
A .
5 K materials.
L
z
g FIG. 3. A continuous micromodel il-
© 1 7 lustrating the stress—strain behavior of
5, i a lattice cell characterized by a set of
§ : six “elastic” parametersKy, K, , P,
(1/:) 1 P., k, andy.
N B ; .
/ P, P,
1 1
_+_
K, K,
Stress [arb. units]
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FIG. 4. The currently used micromodel illustrating the stress—strain behavior of a typical lattice cell composed of a purely elastic unit anssialoncla
interstice displaying both elasticity and jump and hysteretic phenomena. Apart from the geometric parameters, the lattice cells in this npoeséatedre
by four “elastic” parameters: the elasticity of the graiKg, the opening and closing pressuRggandP., and the elasticity of the intersticés . The total
strain on a lattice cell can be calculated by a series interaction. This micromodel derives from the general continuous model by settind petiual to
zero.

Ill. THE LISA MODEL interstices are considered to have zero n{assauses®) is

— . . . assumed to be very smplWe call the combination of two
As shown in Fig. 1, each lattice cell consists of an elastic bnodes left and riaht of 4 nod ith their lenath d
portion (grain) and an interstice elemefibond. According subnodes eft and right of a grid node, wi errlengins an

to our model, the latter is responsible for the elastic hystermass,es’ a G'_‘D’G ce{graln—.bond—gram Depend|.ng on the
etic response. In order to describe the interstice region bet!astic behavior of the grains and the bond, this cell can be
tween two grains, each grid nodés split into two subnodes linearly elastic, classical nonlinear or nonclassical nonlinear.
i~ [see Fig. 10)]. Since in dynamical experiments the con- For the simulation of dynamic processes, we also con-
tribution of classical nonlinearity is generally negligible, we sider a time discretization=0,1,2,... with a constant time
assume that the grains are linearly elastic. We confine all thétep 7. When referring to lengthé&s), displacementsu) and
nonlinear behavior to the interstices. Associated with eaciorces F,f), the first subscript always refers to the space
subnode is a length,=L/2 (i.e., of half a grainand a mass discretization, whereas the second refers to the time discreti-
m,=pL,, wherep is the mass density per unit length. The zation. However, for brevity, starting with E¢3), we will
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usually omit one or both indices when equal to the “current” F=(F"+F)/2. (12
values ofi and/ort.
A. Classical phase materials 1. Rigid interstice case

Classical phase materials are elastic materials with a In a time interval {,t+1) in which the interstice re-
classical bond system, i.e., the elastic behavior of both graingains rigid, i.e.,5;,, 1= &;, it follows:
and bonds is linear or classically nonlinear. A particular case . §,,,— 81 &—6i-1 Ad_;

occurs when all of the interstices behave rigidly, i.e., the 2r 2 2 (13
length of each interstice remains constant:

© B1—28+01  Aby
8 =82+ u’—u =const VTo<t<Ty, (4) 5~ — Zt = tz , (14)
! ! T T
whereT, and T, represent two arbitrary times a@ is the  where we have applied the usual first order finite difference

rest length of theth interstice. This corresponds to the caseformalism together with the definition of the forward differ-
of “perfect contact” in Ref. 16. In other cases of “classical ence operator

phase elasticity”s; ; may be allowed to vary, provided the

elastic modulusgi.e., the derivative of the stress with respect AYi=Yr+1—Yk- (15
to the strainis a continuouglinear or nonlinearfunction of From Egs.(6), (8), and(9), it follows
the applied stress. a

To describe the general case, we assume that the follow- f=— 5~ §A5t—1+ K,(6— 69, (16)

ing forces act on each subno@ee use the convention that
forces are positive when pointing to the positivdirection: ~ Where
An “external” elastic forceF;;, due to the presence of 1
an excitation of the bar at the intersticat the timet. Ne- a=s.
glecting, as mentioned, the classical nonlinear terms,

(17

T

2pL, )

Note that if § never change¢permanently rigid inter-

Fi=K, Uiza Uit 5) face, As_,=0 ands=6" at all times, and therefore

L 1
whereK is the stiffness of the grains angf; is the subnode f==PP (18)
displacement. as in Ref. 15. In this case,* =u~ at each time.

A “dissipative” force yduft/dt, which is required in
the simulation of dynamic resonance experiments in order to
obtain steady state solutions. 2. Classical interstice case
An “internal” force, which acts on the interstice to keep . L - .
the two subnodes together and transmits the external excita- When the interstice is not rigid, the arival of an exteral

tion through the bal® Since the interstice itself has no mass: exciighon may change its 'ef‘gth- Then, at_ least locally, we
f.=—f,. These forces represent the “interaction forces"mUSt assume that the material is undergoing a change. Ac-
i, it-

in the interstice cordingly, we modify Eq(16) by multiplying the three terms
o — on the right-hand side by three bond “quality” parameters
An elastic “restoring” force , = s
g’, andqg” (each of them less or equal to unityvhich allow

e Sit— 550) ©) us to specify the quality of the interface bond at the time
it T o
’ 89 P a
- e n _ «(0)
which corresponds to the elastic contribution, analogous to f 927973 Ad1+a"K (8- 59). (19
Eq. (S for the grain. _ In the general case of a “classical” interstiag,q’, andq”
The"equatlon of motion for the two subnodes is then  are assumed to be constant, but more generally they may
pLal==F=—yu=+f=+77. (7)  depend on the stress in a continuous and reversible way. The
By subtracting and summing these equations, we obtain thegid interstice phase is recovered by placing all values equal
following: to unity.
The differential equation of the state evolution of the  Substituting Eq(19) into Eq. (8), we obtain
interstice(describing the hysteretic lopp an5= rp— yS—q’aA 51— 2r"K (85— 80, (20)
an3=P—y5+ 2f+37-7". (8 wherer=1—q, r"=1—q". Equation (9) remains unaf-

The diff ial tion d ibing th | fected, because it does not involve the internal forces.
€ differential equation describing the pulse propaga- Following Eg.(20), the overall elastic properties of the

tion GBG cells are defined by an effective elastic constant, which
pLy=F— 19y, (90 is a function of the elastic constants of the grain and bond,
and of the(instantaneoysvalues of the bond quality param-
where
eters
P=F"—F", (10 Ker=P(Kg,K;,0,0",9"). (21)
y=(u"+u")/2, (11)  Sinceu™=y=* §/2, we obtain from Eqs(9) and(20),
6 J. Acoust. Soc. Am., Vol. 113, No. 6, June 2003 Scalerandi et al.: Modeling nonclassical nonlinear elastic behavior
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2pL 0" =(1+1)F=+(1-r)F"—2yu"%q'a(Au,"
—Au_)F2r"(ut—u" =69, (22

From Eq.(22) and by assuming that, and = are chosen in
order to assure optimal convergence,

2L, Kg
T - 71 (23)
it follows:

Bugy = (1+0U%  + (1-1U%, — 2AU- 1+ AUz — U )

0
!
e
F 3
}
y

q

<
<

A 4
\ 4

o} Cc
FIG. 5. Representation of the protocol for the dependence of the bond
quality factorg on the applied pressure.

choices of protocol are, of course, possible and might be
more suitable in general or in particular situations.
In the above described protocol, the specimen is repre-

FE(UT—u)+ Kir” 50 (24) sented as a sequence of GBG cells, each defined by a pair of
' activation pressures and by an initial bond state configura-
where tion. If P=P, or P<P,, there is only one possible state,
rigid or elastic, respectively. In the pressure rarige<P
C— 2Lpp B—14 s Ae1— E <P, two different states are possible, depending on the ac-
R T cr’ ) 2’ tivation history of the GBG. The distribution of the pair of
(25) values P,,P.), represented by the densipyc(Pg,P.) of
2K, r” i i i ;
E=1-r—q'A— [ nonclassical GBG cellghysteretic and reversible elastic

c - units), can be obtained by inversion of quasistatic stress—

H ,20
We remark here that, when the linear attenuation is not negtr/n measurements

ligible, better convergence is obtained by choosing a fre-  1he initialqdistribution(att=0) is strongly affected by
quency dependent time stép the previous activation history of the specimen. In the fol-

lowing the specimen is assumed to be, at the tim®, com-
2L, \/p \/1+ V1+4y%(02p?(2L,)?)
T K_g 2 '

Equations(25) needs to be correspondingly modified.

(26)

B. Nonclassical phase materials

In a classical phase material, the parametgrg’, and
q” at each grid point are smooth single valued functions of
the stress. In a nonclassical material, the internal structure
may vary discontinuously and nonuniquely as a function of
the applied stress. The discontinuous or nonunique stress de-
pendence may be due to various physical mechanisms, e.g., a
redistribution of dislocations, crack activatignpening or
closing or frictional forces(jerks). In the case of nonlinear
elastic materials it is reasonable to assume that these changes
affect only the interstice region. The effects at the
mesoscopic—microscopic scale may be conveniently mod-
eled by introducing a more complex dependence of the bond
quality parameters], q’, andq” on the local applied pres-
sure. To describe the dependence of the bond quality param-
eters on the externally applied driving pressure in a nonclas-
sical phase, we apply an approach similar to the one of Ref.
10, as described in Sec. Il. We assign a pair of pressure
parameter®, andP. to each GBG cellPy=<P.). When the
local pressure applied to the interstice reaches the \Rjye
we allow the bond quality parameters to switch from their
initial values to unity, i.e., the bond becomes rigid fer
>P.. Conversely, wherP decreases below, the bond-
quality parameters are switched to a value less than unity.

The protocol for the bond quality parametgas a function
of the local pressur® is schematized in Fig. 5. Sinag

affects only the wave attenuation, which is not relevant in th

present context, we keep for simplicity =1 at all times.

FIG. 6. PM space representation. Each dot represents one HEU or(REU.
Specimen initially at zero pressure. Units in the dark gray and light gray

éareas are initially soft or rigid, respectivel§h) specimen under an external

sinusoidal driving pressure betwepp,, and pyax. Units in the dark gray,
light gray, and white areas are permanently soft, permanently rigid and

Likewise, for simplicity, we set]”=q at all pressures. Other active, respectively.
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pletely relaxed, i.e., kept at atmospheric pressie Q after Once the initial configuration is specified and the forcing

proper rescalingand constant temperature for a sufficiently protocol defined, the iteration equatio(®}) yield the tem-
large time interval. The initial conditions then corresponds toporal evolution of the system.

the low energy “equilibrium state” produced by applying an

oscillatory field amplitude slowly decreasing from a very IV. SIMULATIONS OF NONLINEAR RESONANT BAR
large value to zeré' Assuming that random transitions be- EXPERIMENTS

tween the elastic and rigid states occur when the applied
pressure falls between the opening and closing pres¢sees
Ref. 9 for more details about the relaxation progesise
following initial conditions apply:

In the following we focus our attention on a resonant bar
experiment performed on a typical material exhibiting non-
classical nonlinearity.We assume that a rod-shaped speci-
men is equipped with a transducer generating monochro-
q=1 if P,<0 andP.<0, matic waves of excitation amplitude, attached at one end
and with an accelerometer attached to the other end. The

q=1-r if Pc>0 andPy>0, frequencyfy is swept through the fundamental resonance

g=1 with probability p./(p,+ pe) (27 mode_;fo of the_e spec_imen and th_g tim_e averaged ac_celeration
amplitudeA, (in stationary conditionsis recorded. This pro-
if P.>0 andPy<0, cedure of resonance curve tracking is repeated for several

different levels of excitation.

In the simulation approach, each elastic uiEU or
where p. and p, are the transition probabilities from the REU) corresponds to a point in the PM spdsee Fig. 6)].
elastic to the rigid state and vice versa. The dark and light gray areas in the plot correspond to ini-

g=1-—r with probability p,/(p,+ pe),
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tially soft and rigid interstices, respectively. In the stationaryconditions were usually reached in about 40 round trips of
state of a resonance, the actual presgurier each HEU/ the wave. Results are qualitatively independent from the
REU oscillates between a minimum and a maximum presehoice of the transition rateg, and p., providedp,<p.
sure Pmin and P .y, respectively, depending on the exter- <1 (see also Ref. 9 Similar behaviors are found for the
nal excitation level and its location in the Haee Fig. €)]. fundamental resonance and for higher modes.
If the HEU/REU is situated within the activation triandtee Figure 7 illustrates a typical numerical simulation of the
PM space area bounded by the diagoRgkP. and the resonant bar experimefgimulations are performed without
lines Po=Pin and P.=P,,,0, the nonlinear properties are letting the system relax to the original initial conditions after
activated by the forcingwhite area in the plgt As a conse- each sweep The time averaged acceleration amplitude on
guence, the bond will change during the excitation procesthe free edge is plotted vs frequency for several driving am-
between rigid and soft. plitudes in Fig. Ta). From Fig. 7a) (using a Lorentzian fjt

In all the simulations arbitrary units have been chosenone can determine the resonance frequency and its ampli-
The values of the parameters gre'l, K,=1, K;=3, 2L, tude. The width of the resonance curve is a measure of the
=1, 6=1, y=0.0001,p,=0.0001, anch,=0. Simulations  attenuation. In the case of skewed resonance curves the at-
have been performed considering 1000 grains. Stationarienuation can be obtained by means of the RTMF method
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proposed by Smitlet al? The relative changes of frequency can be utilized as a powerful tool for nondestructive evalua-
and attenuatioridefined as the half-width of the Lorentzjan tion in a large variety of structural or earth materials.
vs the resonance amplitude are shown in Fidp).7Both of The micromodel and protocol, which have been used to
them display a linear dependence on the amplitude of thdescribe the local elasticity, represent, of course, only one of
output acceleration in resonance, although an initial saturamany possible alternativé§. The main purpose of the
tion is observed for the resonance frequency shift, in agregpresent work is to present a method, which is flexible enough
ment with experimental dafa. to allow one to adopt any plausible modelen if it includes

The temporal signal in resonance is shown in Fi@) 8 complex local interaction mechanisimand to illustrate its
for a given driving amplitude. The signdbperfectly sinu- implementation by means of a model, which seems to us to
soidal in the linear case or at very low driving amplitudiss  be particularly appealing. Another goal is to elicit more de-
distorted due to the nonlinearity. The triangular shape betraygiled experiments, in order to discriminate conclusively be-
the hysteretic behavior of the system. The fast Fourier trangween the variety of plausible models and solicit suggestions
form (FFT) of the signal is illustrated in Fig.(B). As ex-  based on basic mechanisms at the molecular dynamics level.
pected, higher order harmoni@isoth even and oddare gen-
erated. Even harmonics arise in the present model, since galICKNOWLEDGMENTS
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