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Recent studies show that a broad category of materials share ‘‘nonclassical’’ nonlinear elastic
behavior much different from ‘‘classical’’~Landau-type! nonlinearity. Manifestations of
‘‘nonclassical’’ nonlinearity include stress–strain hysteresis and discrete memory in quasistatic
experiments, and specific dependencies of the harmonic amplitudes with respect to the drive
amplitude in dynamic wave experiments, which are remarkably different from those predicted by
the classical theory. These materials have in common soft ‘‘bond’’ elements, where the elastic
nonlinearity originates, contained in hard matter~e.g., a rock sample!. The bond system normally
comprises a small fraction of the total material volume, and can be localized~e.g., a crack in a solid!
or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated
as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements
~grains!, which make up the hard matrix. Calculations are performed in the framework of the local
interaction simulation approach~LISA!. Experimental observations are well predicted by the model,
which is now ready both for basic investigations about the physical origins of nonlinear elasticity
and for applications to material damage diagnostics. ©2003 Acoustical Society of America.
@DOI: 10.1121/1.1570440#

PACS numbers: 43.25.Dc, 43.25.Gf, 43.25.Ed@MFH#

I. INTRODUCTION

In the last decade, numerous studies of a diverse class of
materials such as earth materials, cement products, concrete,
composites, etc., have shown that their elastic nonlinear be-
havior is significantly different from the classical nonlinear
behavior found in ‘‘ordinary’’ materials, such as glasses,
single crystals, and numerous others.1–3 Despite their very
different structural and chemical properties, these materials
share the same nonlinear elastic signatures that can be ob-
served in both quasistatic and dynamic experiments. In the
following we shall say that these materials display ‘‘nonclas-
sical’’ nonlinearity, while the ‘‘ordinary’’ materials, which
obey the traditional nonlinear theory of Landau4,5 shall be
called ‘‘classical’’ nonlinear.

The fundamental characteristic of nonclassical material
behavior in quasistatic experiments is the appearance of
stress–strain hysteresis and discrete memory.6 Differences
between nonclassical and classical nonlinear dynamic behav-
ior include: a downshift of the resonance frequency, propor-
tional to the resonance amplitude in the nonclassical case
versus a quadratic amplitude dependence in the classical
case; nonlinear attenuation versus amplitude independent at-
tenuation; quadratic amplitude dependence of the third har-

monic versus cubic in the classical case.2 Another striking
feature observed in the nonclassical nonlinear dynamic re-
sponse of nonclassical materials is ‘‘slow dynamics,’’ i.e., the
slow recovery of the linear material properties~wavespeed
and attenuation! after a sample has been subjected to a
force.7–9

Nonclassical nonlinear effects are believed to be due to
the presence of soft regions in hard materials~e.g., micro-
cracks, flat pores and soft bonding regions between grains in
a granular material!. They have been successfully reproduced
by a model proposed by Holcombe and, later, by Guyer and
McCall,10 based on a Preisach–Mayergoyz~PM! space rep-
resentation, in analogy with the treatment of magnetic hys-
teresis. Such a model provides a simple phenomenological
description of the complex elastic behavior of an elementary
elastic unit in the composition of an arbitrary material. Each
unit is described by an elementary constitutive law that ac-
counts for effects such as nonlinearity, hysteresis and end-
point memory. The collection of all units, each of them with
their particular constitutive relations, yields the so called
‘‘PM space,’’ which characterizes the material specimen and
can be used to predict the static mechanical behavior of rocks
in agreement with macroscopic observations. In the case of
dynamic problems, Van Den Abeeleet al.11 used a quasiana-
lytical approximation of this model for homogeneous and
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isotropic nonlinear media to evaluate the influence of hyster-
esis on the propagation of longitudinal waves.

Analytical approaches significantly simplify the problem
but may not succeed in reproducing the whole set of ob-
served phenomena. Application of numerical calculations
can serve as an alternative for a more complete theoretical
analysis, including the extension of a basic one-dimensional
model to higher dimensions. Computer models based on a
microscopic approach, such asab initio calculations and mo-
lecular dynamic techniques12 are commonly used and allow,
for instance, the understanding of atomic-scale effects and
material behavior under applied stresses.13 However, such
methods are often of no practical use because of the huge
CPU time required, even for simulations over a relatively
small number of atoms. Therefore, a bridging between a mi-
croscopic and a macroscopic description is extremely useful.

In wave propagation applications, Delsantoet al.14 pro-
posed an approach for numerical simulations of macroscopic
wave phenomena in complex heterogeneous media by intro-
ducing localized features at the mesoscopic to microscopic
scale. The approach is based on the local interaction simula-
tion approach~LISA!15 in conjunction with a spring model.16

A very important feature of LISA is, as its name implies, the
capability of implementing at the local level even very com-
plex mechanisms, which would be difficult to include in a
partial differential equation. In fact the method allows full
freedom in the choice of interaction between the nodes
which represent the boundaries of the material cells.

It is also possible, by splitting the nodes at the interfaces
between different material components into ‘‘subnodes,’’
each related to a different component, to include all kinds of
microscopic-to-mesoscopic scale features. Such a model was

implemented numerically in the LISA framework to simulate
the influence of the local nonlinear elastic properties on the
one-dimensional dynamic wave propagation in nonclassical
materials.17 To our knowledge, this is the only study to date
that explicitly incorporates a macroscopic simulation of dy-
namic nonlinearity and hysteresis.

One of the drawbacks of numerical simulations is the
difficulty of insuring the convergence and stability of the
solutions. In this work, we propose a modification of the
micromechanical properties of the individual units, as sug-
gested in previous papers,10 providing both an alternative
physical description of the elasticity of the bond system and
a more stable numerical treatment.

In Sec. II, we define for each unit the nonanalytical con-
stitutive law provided by the model used as input for the
LISA simulation. The main difference with the model of
Guyer and McCall10 is that the units, which represent the
interstices between grains, are elastic and therefore not re-
stricted to only two strain states~‘‘open’’ and ‘‘closed’’!. In
Sec. III, a generalization of the spring model16 is introduced
for the simulation of the propagation of ultrasonic waves in
classical materials, with both rigid and nonrigid interfaces.
The approach is then extended to the treatment of nonclassi-
cal nonlinearities.

In order to illustrate the applicability of the model, we
focus our attention on simulations of a resonant bar experi-
ment~Sec. IV! and show that our model is capable of repro-
ducing all of the observed nonclassical nonlinear features.

II. CONSTITUTIVE RELATIONS

Let us consider a sample of a multigrained material, as
shown in Fig. 1~a!. For simplicity, we assume that grains are
homogeneous and that the distance between two grain cen-
ters isL when no pressure is applied to the bar. Likewise we
assume that, initially, all the interstices between grains have
the same lengthd (0)!L. The bar may then be represented by
the 1D lattice sketched in Fig. 1~b!: a sequence of elastic
portions separated by soft interstice regions. The latter can be
thought of as the bond system between the grains. In the
following we will call the combination of elastic grain and
interstice elastic unit~EU! or lattice cell.

In the PM space model,10 the interstice regions can exist
only in two states: open or closed. In the open state the
interstice has a lengthd0 . When the pressure on the inter-
stice increases, it behaves rigidly and remains at the length
d0 up to a certain pressurePc . At this pressure level, the
interstice instantaneously closes~infinitely soft elasticity for
an infinitesimal short time! and assume the lengthdc

(<d0). Upon further increase of pressure, the interstice con-
tinues to behave rigidly, this time with lengthdc . When
decreasing the pressure, the interstice remains at its lengthdc

down to a pressure levelP0(<Pc), where it instantaneously
opens, and remains at the lengthd0 upon further decrease of
the pressure. The grains are considered to be purely elastic,
represented by a modulusKg . The corresponding stress–

FIG. 1. ~a! Representation of a specimen bar with grains and interstices;~b!
its 1D schematic representation;~c! representation of the forces acting on
the two subnodes delimiting an interstice.
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to be positive if the length is decreasing, and pressure is
considered positive in compression, negative in tension!. The
pairs (P0 ,Pc) have generally different values for each inter-
stice.

The residual modulus of a lattice cellKcell can be calcu-
lated as follows:

1

Kcell
5

1

Kg
1

1

KI
, ~1!

whereK I is the interstice modulus, which is infinity~rigid

behavior! except atP0 and Pc . For completeness, we also
illustrate in Fig. 2 the elastic response of a single lattice cell,
both for P0ÞPc ~hysteretic jump cell! and for P05Pc ~re-
versible jump cell!.10 Apart from two geometric parameters
~L andd (0)), lattice cells in this model are thus represented
by four ‘‘elastic’’ parameters:Kg , P0 , Pc , andd0 .

For numerical simulations, the appearance of jumps in
the state equation, i.e.,i the interstice length, may cause
problems of convergence and stability. Also, from a physical
point of view, discontinuities in a physical parameter are
unrealistic. Ideally, it would be most satisfactory to describe
the elastic behavior by means of smooth analytic functions.
As an example, the expressions

FIG. 2. The micromodel of Guyer and McCall~Ref. 10! illustrating the stress–strain behavior of a typical lattice cell composed of an elastic unit and a
nonclassical interstice. The grains are purely elastic, the interstices display jump and hysteresis phenomena. Apart from two geometric parameters ~L andd (0),
see Fig. 1!, lattice cells are represented by four ‘‘elastic’’ parameters: the elasticity of the grainsKg , the opening and closing pressuresP0 andPc , and the
elementary length changed02dc . The total strain on a lattice cell can be calculated by a series interaction. A statistical ensemble of such cells represents a
microinhomogeneous material.
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e5H P

Kg
1

P1P02x ln@cosh~~P2P0!/x!#

2KI
1kS 11tanhS P2P0

x D D if P.0,

P

Kg
1

P1P02x ln@cosh~~P2P0!/x!#

2KI
1S k1

~Pc2P0!

KI
D S 11tanhS P2P0

x D D if P,0

~2!

yield the elastic stress-strain behavior of the lattice cell illus-
trated in Fig. 3, i.e., describes the hysteresis loop. Here, a
total of six ‘‘elastic’’ parameters are involved:Kg , KI , P0 ,
Pc , k, andx. KI introduces a difference in elasticity modu-
lus before and after the hysteretic open-closure pressure
range;k reflects the magnitude of the jump in strain atPc

andx takes into account the smoothness of the transitions at
Pc and P0 . The PM space of Ref. 10 can be reproduced in
the limit of KI→` andx50, i.e., when there is no change in
the elasticity modulus before and after closure, and the clos-
ing and opening are instantaneous in pressure.

However, since we are treating the bond system as soft
inclusions, it is reasonable to assume that the modulus of a
lattice cell alters when the elastic features change states.
Therefore, it seems appropriate to retain the interstice soft-
ness parameterKI at a value different from infinity. In order
to limit the number of free parameter values to four, as in the
original PM space model, we putk5x50. In doing so, we
have adjusted the micromechanical properties of the bond
elements, introducing a state variable which rules the inter-
stice elastic properties. Instead of opening and closing dis-
continuously in pressure, the interstice element behaves lin-
early elastic, with modulusK85d (0)/L (0)KI , up to the
pressurePc . At that pressure level, the element becomes
rigid ~infinite modulus!, and it remains rigid for all pressures
above. When decreasing the pressure, the interstice remains
at a fixed length down to a pressure levelP0 , where it in-
stantaneously opens and continues afterwards to increase its
length according to Hooke’s law,

e I5
d~0!2d

d~0!
5

P

K8
. ~3!

The sudden decrease in strain~increase in length! of the lat-
tice cell atP0 amounts to (Pc2P0)/KI . The corresponding
stress–strain behavior of the elastic unit, the interstice ele-
ment and the total lattice cell are shown in Fig. 4. As in the
case of the original PM space model, the micromechanical
behavior can be described by piecewise linear functions. If
P05Pc , we talk of a reversible elastic unit~REU!. If P0

differs from Pc , we use the term hysteretic elastic unit
~HEU!.

The new representation is an alternative model to the
PM space model for a possible nonclassical physical mecha-
nism. Of course, the choice of the protocol for the state vari-
able should be dictated by the physical processes involved in
the propagation at a microscopic level~work in progress!.
However, the simple phenomenological protocol used here
already yields satisfactory results. It also has the advantage
of eliminating the discontinuities of the physical parameter
by replacing them with two discontinuities of a state vari-
able, to be defined in the next section. This is important for
the stability and convergence of the simulations. In the fol-
lowing section, we implement this type of elastic behavior in
the framework of the local interaction simulation approach
~LISA!. However, the LISA approach can be applied to
evaluate the macroscopic dynamic response of systems with
any type of local nonclassical nonlinear elasticity.17 In the
present paper, first we consider the case of ‘‘classical phase’’
materials with completely rigid bonds, then we introduce lin-
early elastic bonds, and finally we implement the case of
bonds with the assumed nonlinear elasticity, in order to de-
scribe the macroscopic dynamic behavior of nonclassical
materials.

FIG. 3. A continuous micromodel il-
lustrating the stress–strain behavior of
a lattice cell characterized by a set of
six ‘‘elastic’’ parameters:Kg , KI , P0 ,
Pc , k, andx.
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As shown in Fig. 1, each lattice cell consists of an elastic
portion ~grain! and an interstice element~bond!. According
to our model, the latter is responsible for the elastic hyster-
etic response. In order to describe the interstice region be-
tween two grains, each grid nodei is split into two subnodes
i 6 @see Fig. 1~c!#. Since in dynamical experiments the con-
tribution of classical nonlinearity is generally negligible, we
assume that the grains are linearly elastic. We confine all the
nonlinear behavior to the interstices. Associated with each
subnode is a lengthLn5L/2 ~i.e., of half a grain! and a mass
mn5rLn , wherer is the mass density per unit length. The

interstices are considered to have zero mass~becaused (0) is
assumed to be very small!. We call the combination of two
subnodes left and right of a grid node, with their lengths and
masses, a GBG cell~grain–bond–grain!. Depending on the
elastic behavior of the grains and the bond, this cell can be
linearly elastic, classical nonlinear or nonclassical nonlinear.

For the simulation of dynamic processes, we also con-
sider a time discretizationt50,1,2,... with a constant time
stept. When referring to lengths~d!, displacements~u! and
forces (F, f ), the first subscript always refers to the space
discretization, whereas the second refers to the time discreti-
zation. However, for brevity, starting with Eq.~3!, we will

FIG. 4. The currently used micromodel illustrating the stress–strain behavior of a typical lattice cell composed of a purely elastic unit and a nonclassical
interstice displaying both elasticity and jump and hysteretic phenomena. Apart from the geometric parameters, the lattice cells in this model are represented
by four ‘‘elastic’’ parameters: the elasticity of the grainsKg , the opening and closing pressuresP0 andPc , and the elasticity of the intersticesKI . The total
strain on a lattice cell can be calculated by a series interaction. This micromodel derives from the general continuous model by setting bothk andx equal to
zero.
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usually omit one or both indices when equal to the ‘‘current’’
values ofi and/ort.

A. Classical phase materials

Classical phase materials are elastic materials with a
classical bond system, i.e., the elastic behavior of both grains
and bonds is linear or classically nonlinear. A particular case
occurs when all of the interstices behave rigidly, i.e., the
length of each interstice remains constant:

d i ,t5d i
~0!1ui ,t

1 2ui ,t
2 5const ;T0<t<T1 , ~4!

whereT0 andT1 represent two arbitrary times andd i
(0) is the

rest length of theith interstice. This corresponds to the case
of ‘‘perfect contact’’ in Ref. 16. In other cases of ‘‘classical
phase elasticity’’d i ,t may be allowed to vary, provided the
elastic modulus~i.e., the derivative of the stress with respect
to the strain! is a continuous~linear or nonlinear! function of
the applied stress.

To describe the general case, we assume that the follow-
ing forces act on each subnode~we use the convention that
forces are positive when pointing to the positivex direction!:

An ‘‘external’’ elastic forceFi ,t
6 , due to the presence of

an excitation of the bar at the intersticei at the timet. Ne-
glecting, as mentioned, the classical nonlinear terms,

Fi ,t
6 5Kg

ui 61,t
7 2ui ,t

6

L
, ~5!

whereKg is the stiffness of the grains andui ,t
6 is the subnode

displacement.
A ‘‘dissipative’’ force g dui ,t

6 /dt, which is required in
the simulation of dynamic resonance experiments in order to
obtain steady state solutions.

An ‘‘internal’’ force, which acts on the interstice to keep
the two subnodes together and transmits the external excita-
tion through the bar.16 Since the interstice itself has no mass:
f i ,t

1 52 f i ,t
2 . These forces represent the ‘‘interaction forces’’

in the interstice.
An elastic ‘‘restoring’’ force

Ii ,t
6 57KI

d i ,t2d i
~0!

d i
~0!

~6!

which corresponds to the elastic contribution, analogous to
Eq. ~5! for the grain.

The equation of motion for the two subnodes is then

rLnü65F62gu̇61 f 61I6. ~7!

By subtracting and summing these equations, we obtain the
following:

The differential equation of the state evolution of the
interstice~describing the hysteretic loop!

rLnd̈5P2gḋ12 f 1I12I2. ~8!

The differential equation describing the pulse propaga-
tion

rLnÿ5F2g ẏ, ~9!

where

P5F12F2, ~10!

y5~u11u2!/2, ~11!

F5~F11F2!/2. ~12!

1. Rigid interstice case

In a time interval (t,t11) in which the interstice re-
mains rigid, i.e.,d t115d t , it follows:

ḋ'
d t112d t21

2t
5

d t2d t21

2t
5

Dd t21

2t
, ~13!

d̈'
d t1122d t1d t21

t2
52

Dd t21

t2
, ~14!

where we have applied the usual first order finite difference
formalism together with the definition of the forward differ-
ence operator

Dyk5yk112yk . ~15!

From Eqs.~6!, ~8!, and~9!, it follows

f 52
P

2
2

a

2
Dd t211KI~d2d~0!!, ~16!

where

a5
1

2t S 2rLn

t
2g D . ~17!

Note that if d never changes~permanently rigid inter-
face!, Dd t2150 andd5d (0) at all times, and therefore

f 52P/2 ~18!

as in Ref. 15. In this case,u15u2 at each time.

2. Classical interstice case

When the interstice is not rigid, the arrival of an external
excitation may change its length. Then, at least locally, we
must assume that the material is undergoing a change. Ac-
cordingly, we modify Eq.~16! by multiplying the three terms
on the right-hand side by three bond ‘‘quality’’ parametersq,
q8, andq9 ~each of them less or equal to unity!, which allow
us to specify the quality of the interface bond at the timet:

f 52q
P

2
2q8

a

2
Dd t211q9KI~d2d~0!!. ~19!

In the general case of a ‘‘classical’’ interstice,q, q8, andq9
are assumed to be constant, but more generally they may
depend on the stress in a continuous and reversible way. The
rigid interstice phase is recovered by placing all values equal
to unity.

Substituting Eq.~19! into Eq. ~8!, we obtain

rLnd̈5rP2gḋ2q8aDd t2122r 9KI~d2d~0!!, ~20!

where r 512q, r 9512q9. Equation ~9! remains unaf-
fected, because it does not involve the internal forces.

Following Eq.~20!, the overall elastic properties of the
GBG cells are defined by an effective elastic constant, which
is a function of the elastic constants of the grain and bond,
and of the~instantaneous! values of the bond quality param-
eters

Keff5F~Kg ,Ki ,q,q8,q9!. ~21!

Sinceu65y6d/2, we obtain from Eqs.~9! and ~20!,
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2rLnü65~11r !F61~12r !F722gu̇67q8a~Dut21
1

2Dut21
2 !72r 9~u12u22d~0!!. ~22!

From Eq.~22! and by assuming thatLn andt are chosen in
order to assure optimal convergence,

2Ln

t
5AKg

r
, ~23!

it follows:

But11
6 5~11r!ui 61

7 1~12r!ui 71
6 22Aut21

6 1q8A~ut21
6 2ut21

7 !

1E~u62u7!6
2Kir 9

C
d~0!, ~24!

where

C5
2Lnr

t2
, B511

g

Ct
, A512

B

2
,

~25!
E512r 2q8A2

2KIr 9

C
.

We remark here that, when the linear attenuation is not neg-
ligible, better convergence is obtained by choosing a fre-
quency dependent time step18

2Ln

t
5A r

Kg

A11A114g2/~v2r2~2Ln!2!

2
. ~26!

Equations~25! needs to be correspondingly modified.

B. Nonclassical phase materials

In a classical phase material, the parametersq, q8, and
q9 at each grid point are smooth single valued functions of
the stress. In a nonclassical material, the internal structure
may vary discontinuously and nonuniquely as a function of
the applied stress. The discontinuous or nonunique stress de-
pendence may be due to various physical mechanisms, e.g., a
redistribution of dislocations, crack activation~opening or
closing! or frictional forces~jerks!. In the case of nonlinear
elastic materials it is reasonable to assume that these changes
affect only the interstice region. The effects at the
mesoscopic–microscopic scale may be conveniently mod-
eled by introducing a more complex dependence of the bond
quality parametersq, q8, andq9 on the local applied pres-
sure. To describe the dependence of the bond quality param-
eters on the externally applied driving pressure in a nonclas-
sical phase, we apply an approach similar to the one of Ref.
10, as described in Sec. II. We assign a pair of pressure
parametersP0 andPc to each GBG cell (P0<Pc). When the
local pressure applied to the interstice reaches the valuePc ,
we allow the bond quality parameters to switch from their
initial values to unity, i.e., the bond becomes rigid forP
.Pc . Conversely, whenP decreases belowP0 , the bond-
quality parameters are switched to a value less than unity.
The protocol for the bond quality parameterq as a function
of the local pressureP is schematized in Fig. 5. Sinceq8
affects only the wave attenuation, which is not relevant in the
present context, we keep for simplicityq851 at all times.
Likewise, for simplicity, we setq95q at all pressures. Other

choices of protocol are, of course, possible and might be
more suitable in general or in particular situations.

In the above described protocol, the specimen is repre-
sented as a sequence of GBG cells, each defined by a pair of
activation pressures and by an initial bond state configura-
tion. If P>Pc or P<P0 , there is only one possible state,
rigid or elastic, respectively. In the pressure rangeP0,P
,Pc two different states are possible, depending on the ac-
tivation history of the GBG. The distribution of the pair of
values (P0 ,Pc), represented by the densityrNC(P0 ,Pc) of
nonclassical GBG cells~hysteretic and reversible elastic
units!, can be obtained by inversion of quasistatic stress–
strain measurements.19,20

The initial q distribution~at t50) is strongly affected by
the previous activation history of the specimen. In the fol-
lowing the specimen is assumed to be, at the timet50, com-

FIG. 6. PM space representation. Each dot represents one HEU or REU.~a!
Specimen initially at zero pressure. Units in the dark gray and light gray
areas are initially soft or rigid, respectively;~b! specimen under an external
sinusoidal driving pressure betweenpmin and pmax. Units in the dark gray,
light gray, and white areas are permanently soft, permanently rigid and
active, respectively.

FIG. 5. Representation of the protocol for the dependence of the bond
quality factorq on the applied pressure.

7J. Acoust. Soc. Am., Vol. 113, No. 6, June 2003 Scalerandi et al.: Modeling nonclassical nonlinear elastic behavior

  PROOF COPY 029306JAS  



  PROOF COPY 029306JAS  

  PRO
O

F CO
PY 029306JAS  

pletely relaxed, i.e., kept at atmospheric pressure (P50 after
proper rescaling! and constant temperature for a sufficiently
large time interval. The initial conditions then corresponds to
the low energy ‘‘equilibrium state’’ produced by applying an
oscillatory field amplitude slowly decreasing from a very
large value to zero.21 Assuming that random transitions be-
tween the elastic and rigid states occur when the applied
pressure falls between the opening and closing pressures~see
Ref. 9 for more details about the relaxation process!, the
following initial conditions apply:

q51 if P0,0 and Pc,0,

q512r if Pc.0 and P0.0,
~27!

q51 with probability pe /~pr1pe!

if Pc.0 and P0,0,

q512r with probability pr /~pr1pe!,

where pe and pr are the transition probabilities from the
elastic to the rigid state and vice versa.

Once the initial configuration is specified and the forcing
protocol defined, the iteration equations~24! yield the tem-
poral evolution of the system.

IV. SIMULATIONS OF NONLINEAR RESONANT BAR
EXPERIMENTS

In the following we focus our attention on a resonant bar
experiment performed on a typical material exhibiting non-
classical nonlinearity.1 We assume that a rod-shaped speci-
men is equipped with a transducer generating monochro-
matic waves of excitation amplitudeAd attached at one end
and with an accelerometer attached to the other end. The
frequency f d is swept through the fundamental resonance
mode f 0 of the specimen and the time averaged acceleration
amplitudeAr ~in stationary conditions! is recorded. This pro-
cedure of resonance curve tracking is repeated for several
different levels of excitation.

In the simulation approach, each elastic unit~HEU or
REU! corresponds to a point in the PM space@see Fig. 6~a!#.
The dark and light gray areas in the plot correspond to ini-

FIG. 7. Result of a resonant dynamic
experiment.~a! Time averaged accel-
eration versus frequency for different
driving amplitudes. ~b! Normalized
frequency shift and attenuation vs out-
put wave amplitude at resonance.
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tially soft and rigid interstices, respectively. In the stationary
state of a resonance, the actual pressureP for each HEU/
REU oscillates between a minimum and a maximum pres-
sure (Pmin and Pmax, respectively!, depending on the exter-
nal excitation level and its location in the bar@see Fig. 6~b!#.
If the HEU/REU is situated within the activation triangle~the
PM space area bounded by the diagonalP05Pc and the
lines P05Pmin and Pc5Pmax), the nonlinear properties are
activated by the forcing~white area in the plot!. As a conse-
quence, the bond will change during the excitation process
between rigid and soft.

In all the simulations arbitrary units have been chosen.
The values of the parameters arer51, Kg51, Ki53, 2Ln

51, d (0)51, g50.0001,pe50.0001, andpr50. Simulations
have been performed considering 1000 grains. Stationary

conditions were usually reached in about 40 round trips of
the wave. Results are qualitatively independent from the
choice of the transition ratespr and pe , provided pr,pe

!1 ~see also Ref. 9!. Similar behaviors are found for the
fundamental resonance and for higher modes.

Figure 7 illustrates a typical numerical simulation of the
resonant bar experiment~simulations are performed without
letting the system relax to the original initial conditions after
each sweep!. The time averaged acceleration amplitude on
the free edge is plotted vs frequency for several driving am-
plitudes in Fig. 7~a!. From Fig. 7~a! ~using a Lorentzian fit!,
one can determine the resonance frequency and its ampli-
tude. The width of the resonance curve is a measure of the
attenuation. In the case of skewed resonance curves the at-
tenuation can be obtained by means of the RTMF method

FIG. 8. Generation of higher order
harmonics.~a! Temporal signal~accel-
eration versus time!; ~b! fast Fourier
transform of the signal;~c! amplitudes
of the second and third harmonics vs
the fundamental one.
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proposed by Smithet al.22 The relative changes of frequency
and attenuation~defined as the half-width of the Lorentzian!
vs the resonance amplitude are shown in Fig. 7~b!. Both of
them display a linear dependence on the amplitude of the
output acceleration in resonance, although an initial satura-
tion is observed for the resonance frequency shift, in agree-
ment with experimental data.23

The temporal signal in resonance is shown in Fig. 8~a!
for a given driving amplitude. The signal~perfectly sinu-
soidal in the linear case or at very low driving amplitudes! is
distorted due to the nonlinearity. The triangular shape betrays
the hysteretic behavior of the system. The fast Fourier trans-
form ~FFT! of the signal is illustrated in Fig. 8~b!. As ex-
pected, higher order harmonics~both even and odd! are gen-
erated. Even harmonics arise in the present model, since all
HEU and REU contribute to both hysteretic and non hyster-
etic nonlinearity. In fact, the bimodulus feature inP5Pc

~see Fig. 4!, or more precisely the modulus jump, leads to the
formation of higher order harmonics~at any order!.

Finally, in Fig. 8~c! we analyze the dependence of the
second and third order harmonics on the amplitude of the
fundamental one in a log–log plot. Both curves have slope
two, in agreement with experimental data. We recall that the
expected slopes in the classical nonlinear case are two and
three for the second and third harmonics, respectively. The
ratio between the amplitudes of the second and third order
harmonics depends strongly on the choice of the parameters,
but is always less than one. The ratio may range from close
to one to almost zero, in agreement with experimental obser-
vations on different materials.24

V. CONCLUSIONS

We have presented a numerical simulation approach to
the study of nonclassical nonlinear effects induced by soft
inclusions in a hard matrix. Typical examples of soft inclu-
sions are the interstices among grains in a rock. In our ap-
proach they are represented by means of lattice units includ-
ing portions of the adjoining grains. For each elastic unit we
assume that all the nonlinearity is included in the interstice
region. The nonclassical nonlinear behavior of the unit arises
from transitions between a rigid and a soft state~or vice
versa!.

The above nonclassical micromodel has been imple-
mented in the framework of a local interaction simulation
approach~LISA!. As a result it has been possible to repro-
duce, at least qualitatively, most of the nonclassical nonlinear
effects, which have been discovered in recent years in qua-
sistatic and in resonant dynamics experiments. Some of these
results are included in the present paper.

A very important effect, the so-called ‘‘slow dynamics,’’
which gives rise to a logarithmic increase with time of the
resonance frequency and amplitude in a resonant dynamics
experiment when the driving force is released, has been ig-
nored, since it requires the further inclusion of additional
mechanisms.9

Another very important extension of the model concerns
the possibility of applying it to the analysis of local or dif-
fused damage.25 By indentifying the appropriate changes in
the density representation of HEU’s and REU’s, the model

can be utilized as a powerful tool for nondestructive evalua-
tion in a large variety of structural or earth materials.

The micromodel and protocol, which have been used to
describe the local elasticity, represent, of course, only one of
many possible alternatives.26 The main purpose of the
present work is to present a method, which is flexible enough
to allow one to adopt any plausible model~even if it includes
complex local interaction mechanisms! and to illustrate its
implementation by means of a model, which seems to us to
be particularly appealing. Another goal is to elicit more de-
tailed experiments, in order to discriminate conclusively be-
tween the variety of plausible models and solicit suggestions
based on basic mechanisms at the molecular dynamics level.
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