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Linear and nonlinear elastic wave pulse propagation experiments were performed in sandstone rods,
both at ambient conditions and in vacuum. The purpose of these experiments was to obtain a
quantitative measure of the extremely large nonlinear response found in microcracked~i.e.,
micro-inhomogeneous! media like rock. Two rods were used,~1! a 2-m-long, 5-cm-diam rod of
Berea sandstone~with embedded detectors! used in previously published experiments and~2! a
somewhat smaller 1.8-m-long, 3.8-cm-diam rod. In the earlier experiments, wave scattering from
the embedded detectors was a critical problem. In most of the experiments reported here, this
problem was avoided by mounting accelerometers directly to the outside surface of the rod. Linear
results show out of vacuum attenuations varied from 1.7 Np/m at 15 kHz~Q510! for the large rod
to 0.4 Np/m at 15 kHz~Q555! for the small rod; attenuations for the small rod in vacuum were
much less, typically about 0.15 Np/m at 15 kHz~Q5150!. Wave velocities ranged from 1900 to
2600 m/s. The nonlinear results illustrate growth of the second and third harmonics and
accompanying decay of the fundamental. These nonlinear results compare well with a numerical
model. Although the results here were performed at peak strain amplitudes as low as 531027, they
still show the pronounced nonlinearity characteristic of rock, in agreement with static and resonance
studies using the same rock type.

PACS numbers: 43.25.Dc@MAB #

INTRODUCTION

The micro-inhomogeneities characteristic of many rocks
give rise to some spectacular nonlinear elastic effects. In
previous pulse-mode laboratory experiments, Meeganet al.1

demonstrated that, under ambient conditions, harmonics of
pure-tone signals are generated along the wave propagation
path in a Berea sandstone bar at strain levels as low as
331026. The experiments roughly confirmed predictions
from perturbation theory2 that the second harmonic ampli-
tude grows linearly with propagation distance, with the
square of the input frequency, and with the square of the
fundamental amplitude. Resonance experiments conducted
with the same rock type at similar strain levels also show
pronounced effects associated with nonlinearity. The fre-
quency at which Young’s mode resonance occurs shifts no-
ticeably with increasing drive amplitude for many types of
rock, including Berea sandstone, and multiple harmonics are
generated.3 Static stress–strain measurements4,5 using Berea
sandstone samples show distinctly nonlinear stress–strain
curves as well.

Model studies have been conducted with the solution of
the progressive, one-dimensional~1-D! nonlinear elastic
equation of motion using an iterative Green function method
where a perturbative solution was found to second order in
the nonlinearity.2,6 To compare with experiments, however,

Meeganet al. used the results only to first order in the non-
linearity and included viscoelastic, linear attenuation. Recent
numerical simulations by Van Den Abeele7 include nonlin-
earity to second order and agree with the experimental ob-
servations published by Meeganet al. However, the reso-
nance and static stress–strain measurements noted in the
previous paragraph suggest that a different model of the non-
linear elasticity inherent in rock samples may be more
appropriate.8 Hysteresis, end-point memory, and slow dy-
namics appear to be important, even at the low strain levels
of the pulse propagation experiments. Hence, this work was
motivated by a desire to expand on the earlier experimental
work and to provide additional observations in an effort to
determine the limits of current analytical models of nonlinear
wave propagation in rock.

I. THEORY

The classical theory of nonlinear wave propagation in
elastic solids has been discussed and presented many times
in the literature~see, for example, Refs. 9–11!. To date, most
of the theoretical work used to describe nonlinear propaga-
tion in micro-inhomogeneous materials such as rock has fol-
lowed along these lines. We have compared calculations
from a particular model~theoretical and numerical! devel-
oped by Van Den Abeele6 with some of the experimental
results presented in this paper.

The traditional approach of nonlinear elasticity begins
with the equation of motion for propagation in an infinite
elastic solid in the absence of dissipation written as
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wherer is the mass density,ui is the displacement in thexi
direction~not the particle velocity!, andsi j is the stress ten-
sor. For 1-D motion in thin circular rods, the above equation
simply becomes
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where the stresss may be written in terms of the straine
using a nonlinear version of Hooke’s law as follows:
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whereE is Young’s modulus andb andd are higher-order
nonlinear coefficients. If a source function is present, it is
usually added to the right-hand side of Eq.~2!. If we use Eq.
~3! and the fact that the small signal elastic ‘‘bar’’ speed is
c05AE/r, Eq. ~2! can be rewritten as
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where
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One of the original purposes of our experiments was to ap-
proximate values ofb andd for the sandstone samples avail-
able to us.

We should point out that the traditional approaches of
Thurston and Shapiro12 and McCall2 ~which were adapted
and modified by Van Den Abeele6 and others! yield expres-
sions for 1-D elastic wave propagation in aninfinite medium
and not a thin rod. Thus, although their stress–strain relation
has the same form as Eq.~3!, the constants are different.E,
b, and d in Eq. ~3! replace combinations of the Lame´ and
Murnaghan coefficients,l, m and l ,m,n, respectively. For
example, for an infinite solid,m~l12m!/~l1m! takes the
place ofE in Eq. ~3!. The resulting ‘‘bulk’’ wave speedc0 is
also different for an infinite solid—a well-known result.
Thus, some care is required in comparing values forb andd
measured in a rod or an infinite solid.

Van Den Abeele’s solution6 is a higher-order extension
of the Green function perturbation technique used by
McCall2 particularly applied for a pulsed wave with arbitrary
~discrete! Fourier spectrum. This technique was used to solve
the wave equation for 1-D propagation in an infinite elastic
medium. McCall’s approach is especially useful as it allows
the flexibility of prescribing any source function. Because
the solution is a perturbation result, it is valid only for small
distances from the source. To allow large propagation dis-
tances, Van Den Abeele adapted an iterative approach simi-
lar to Haran and Cook13 by dividing the propagation path
into several small sections and using the output spectrum
from one section as the input source function for the next
section. Moreover, linear attenuation can be addedad hocat
the end of each step in a manner similar to that used by
Pestorius and Blackstock.14

II. EXPERIMENTAL ARRANGEMENT

The pulse propagation measurements reported here were
made using two nearly homogeneous but anisotropic rods of
Berea sandstone~Cleveland Quarries, Amherst, OH!. The
first rod is the 2-m-long, 6-cm-diam rod used by Meegan
et al. This bar has detectors~Valpey-Fisher pinducers, part
VP-1093! epoxied inside the rod within small boreholes
drilled at 45° angles at various points along the rod axis. The
second rod is similar although somewhat shorter and smaller,
1.8 m long and 3.8 cm in diameter and not tapered at the end.
In order to reduce scattering effects, we chose not to drill
holes in this second rod. Instead of pinducers, several B&K
8309 accelerometers were mounted directly to the outside of
the rock~using a cyanoacrylate glue and an activator!, each
oriented along the axial direction. Gluing the accelerometers
onto the rod also allows flexibility in receiver spacing. A
PZT-4A piezoelectric disk and tantalum inertial backload
were epoxied onto the end of the rod as a source, as in the
configuration used by Meeganet al. Because the opposite
end of the rod was not tapered, care was taken so that pulses
that propagated along the smaller bar were short enough that
reflections from the far end never interfered.

The electronics attached to the source and receivers are
depicted in Fig. 1. An Analogic 2020 arbitrary function gen-
erator was the signal source. It was programmed to repeat-
edly output a tone burst with a Gaussian-shaped envelope.
The output of the 2020 was fed into a Hafler Pro5000 audio
amplifier connected to the piezoelectric disk via a trans-
former. The transformer was essential because the Hafler
will not drive a purely capacitive load. Nonlinearity of the
transformer was not a problem; measurements of the spectra
of the electronic signals going into the source at all drive
levels showed that the harmonics of the drive frequency were
all more than 55 dB below the fundamental. For both bars,
the output of each detector was fed into a B&K 2635 charge
amp and then on to a LeCroy 9420 digitizing oscilloscope or
to an Analogic 652/6100B waveform analyzer. Signal-to-
noise ratios were improved by repeating the tone burst sev-
eral times and using standard linear averaging techniques.
We should point out that Meeganet al.connected the output

FIG. 1. Experimental setup: Block diagram shows source driver and one
detector channel.
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of each pinducer to a voltage preamplifier by way of a cali-
brated cable; we chose to use a charge amplifier and not
worry about cable loading effects.15

The choice of source frequencies was limited by the
length of the bar and by the possibility of exciting unwanted
higher order modes. 1-D elastic wave propagation is easiest
to treat theoretically so we attempted to excite only the low-
est order longitudinal mode in the bar. Propagation speed of
this lowest longitudinal mode~or Young’s mode! is about
1900 m/s for the smaller sample—somewhat higher in
vacuum—and about 2600 m/s for the larger rod. Thus, to
obtain enough cycles to analyze before the arrival of the
reflected pulse, we limited the lowest source frequency to
about 10 kHz. Accelerometer bandwidth and the possibility
of exciting higher-order modes limited the highest source
frequencies. Although the lowest-order torsional mode
propagates at any frequency~as well as a host of flexural
modes!, higher-order modes do not propagate below their
cutoff frequencies. These frequencies were calculated from
the rod geometry and the bar and shear wave speeds for both
rods.16 We found that for the smaller rod, the next higher
longitudinal and torsional modes can propagate if their fre-
quencies are greater than about 35 and 55 kHz, respectively.
For the larger rod these frequencies are somewhat lower, 28
and 44 kHz. In addition, there is one more limit to the high-
est source frequency: although the accelerometers have a
mounted resonance frequency of 180 kHz, B&K specifica-
tions indicate their response is flat~magnitude and phase!
only to 54 kHz. The B&K charge amplifiers connected to the
accelerometers have a known flatamplituderesponse to 100
kHz and flatphaseresponse to about 25 kHz. Beyond 25
kHz, the phase shifts upward very slowly, to nearly 30° at
100 kHz. Imperfect accelerometer mounting will lower all
these frequencies. Thus, to obtain an accurate measurement
of the harmonics and still avoid exciting higher order modes,
source frequencies were kept below 20 kHz.

III. LINEAR MEASUREMENTS

Several measurements of linear elastic wave propagation
in each of the sandstone bars were made. The purpose of
these measurements was twofold. First, an extensive com-
parison between theoretical elastic wave propagation in a
sandstone rod and the actual, observed wave propagation has
not been reported. Second, linear attenuation and wave
speeds were required in model calculations. Most of these
measurements were conducted with the small bar because
Meeganet al. had already conducted many linear measure-
ments in the larger bar.

During the initial measurements with the small rod, we
~re!discovered something known to Rayleigh, ‘‘The diffi-
culty of exciting purely longitudinal vibrations in a bar is
similar to that of getting a string to vibrate in one plane.’’17

As already noted, the source frequencies used for these ex-
periments permit propagation of both the lowest-order longi-
tudinal and torsional modes as well as a host of flexural
modes. Although flexural modes are possible, they typically
propagate with very slow speeds, are dispersive, and thus can
be distinguished from other modes. Although our source
condition does not favor torsional mode excitation, we nev-

ertheless found that certain source frequencies do, in fact,
readily excite a strong mode that propagates at the torsional
~shear! velocity and exhibits a twisting motion associated
with the lowest-order torsional mode~see Ref. 18 for similar
experimental results!.

Figure 2 shows examples of tone bursts recorded in both
the small,~a! and~c!, and large~b! bar. Figure 2~a! shows a
1-ms-long tone burst detected 85 cm from the source. Com-
pare this waveform with Fig. 2~b!, a tone burst detected in
the larger bar 38 cm from the source. The tone burst in the
larger bar is much cleaner, perhaps because the detectors
were not mounted on the surface but located near the center
of the rod where torsional motion does not~theoretically!
exist. A shorter tone burst~0.3 ms long! detected at 60 cm in
the smaller bar, Fig. 2~c!, illustrates an arrival which is ap-
parently the lowest torsional mode. The wave traveled with
the shear wave velocity, was nondispersive, and, when an-
other accelerometer was surface-mounted perpendicular to
the original orientation, exhibited a strong twisting motion
characteristic of the torsional mode. We attempted to avoid
frequencies that generated torsional modes for all the experi-
ments reported here.

The accelerometer orientation also posed some interest-
ing measurement problems. Each accelerometer has a trans-
verse sensitivity that is usually negligible. However, near the
transverse resonance frequency and with the proper orienta-
tion, the measured transverse acceleration can be fairly large.
For the B&K 8309s, the transverse sensitivity is a maximum
at 28 kHz, very near the second harmonic in many of our
experiments. We tried mounting the accelerometers with ori-
entations in two different ways, to maximize or minimize the
transverse response. The purpose of the first orientation was
to see how much torsional mode~twisting motion! was
present; the purpose of the second orientation was to de-

FIG. 2. Typical received tone bursts. Top waveform~a! was obtained from
an accelerometer on the surface of the small bar, 85 cm from the source with
a source frequency of 15 kHz and a 1-ms-long tone burst. Middle waveform
~b! was obtained from a pinducer in the large bar, 38 cm from the source
with a source frequency of 14 kHz and a 1-ms tone burst. Bottom waveform
~c! was obtained from an accelerometer on the surface of the small bar, 60
cm from the source with a source frequency 19 kHz and a 0.3-ms tone burst.
Time axes of the top two plots have been shifted in order to show all tone
bursts on the same scale.
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couple the torsional mode from the longitudinal mode signal.
As noted above, problems with unwanted torsional modes
affecting the received signals are minimal with the detectors
imbedded in the larger bar.

Measurements of both wave speed and attenuation are
illustrated in the next group of figures. Figure 3 shows a
typical range stack from several accelerometers mounted on
the small bar. Note the clean waveforms at this frequency;
torsional or flexural modes are not evident. As the figure
shows, it is easy to follow a particular piece of the tone burst
waveform and determine wave speed from the slope. The
wave speed for the larger bar agrees well with the value of
Meeganet al. ~2700 m/s!. We should also note that wave
speeds did vary somewhat from day to day depending on
ambient temperature, pressure, and humidity. The in-vacuum
measurements, on the other hand, varied much less. Wave

speeds for the smaller bar were 1950 and 2100 m/s out and
in vacuum, respectively.

An attenuation measurement for the smaller bar was not
straightforward. The simplest technique—plotting the wave
amplitude as a function of distance—did not work because
site effects at each detector make determination of the decay
uncertain.~Site effects are discussed in the Appendix.! In-
stead, we used a 0.5-ms-long tone burst and recorded the
original tone burst and five of its successive reflections from
both ends of the rod. This was done at three separate accel-
erometer positions. Results for the small rodin vacuumare
plotted in Fig. 4. Because a single accelerometer is used for
each of the three data sets shown, site response is irrelevant.
The average value of the attenuationa for the small bar in
vacuum at 15 kHz was 0.16 Np/m~60.02 Np/m!. The
equivalent average value forQE5p f /(av)—whereQE is
the extensional quality factor andv is the velocity of the
Young’s mode19—is 143 ~610!. The solid vertical lines in
the figure represent places where the tone burst is reflected
from the source end. Data points taken after that reflection

FIG. 4. Peak acceleration values for an initial tone burst and its five later
~multiple reflection! arrivals. Squares represent data taken at an accelerom-
eter 28 cm from the source, circles 35 cm from the source, and diamonds 50
cm from the source. Solid, dotted, and dash–dotted lines represent least
squares fits to each position, respectively. Vertical lines at 3.6 and 7.2 m
represent points where the tone burst is reflected from the source end.

FIG. 5. Output of several accelerometers~oriented to be sensitive to radialr
motion! mounted near the source operating at 12 kHz on the small bar.
Different symbols indicate different runs.

FIG. 6. Spectrum~magnitude! of a large amplitude source signal taken from
a B&K 8309 accelerometer mounted on the rear face of the Ta backload.
Driving frequency was 13.75 kHz.

FIG. 3. Typical rangestack used to calculate pulse propagation speed. Data
taken from accelerometers on small bar, under vacuum~<20 mTorr! with
0.5-ms tone bursts at 15-kHz source frequency. Each waveform amplitude
has been normalized. Dashed line tracks the first arrival of the tone burst and
the dot–dashed line tracks its reflection from the far end of the bar.
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are expected to have additional energy loss because the re-
flected and incident pulse overlap and the exact nature of the
reflection at the source end is not known. Indeed, the value
of the attenuation taking the average value of the slope of
only the first two data points is somewhat smaller, 0.13
Np/m ~QE'180!. A similar experiment done at the same
frequency with the rodout of vacuum yielded an attenuation
of 0.4 Np/m~QE555!. For the larger bar the attenuation out
of vacuum has been measured to be much higher due to
wave scattering from the imbedded pinducers; Meeganet al.
report aQ510 which corresponds toa51.7 Np/m at 15
kHz.

The linear experiments also revealed that the lowest lon-
gitudinal mode does not develop immediately after it is emit-
ted by the source. Several B&K 4374 accelerometers were
mounted within 20 cm of the source oriented to measure the
radial acceleration along the rod since Young’s mode is fre-
quently described as a ‘‘snake swallowing’’ motion. Figure 5
shows the results. It is apparent that there is much less radial
motion near the source than farther down the rod. Generally,
we found that it was not until the wave had propagated a
distance of about one to two wavelengths that the axial and
concommitant radial motions that characterize Young’s
mode were present. Therefore, all measurements on the small

rod were made at a distance greater than 20 cm from the
source where a fully developed Young’s modewasevident.
To our knowledge, the development of Young’s mode shown
here has not been discussed elsewhere in the literature.

IV. NONLINEAR MEASUREMENTS

As a starting point we repeated some of the experiments
conducted by Meeganet al.We chose to use a B&K 8309
accelerometer glued to the backload instead of the optical
probe previously used; the accelerometer was far less noisy
and more sensitive in general. We assumed throughout these
experiments that the accelerometer gave an accurate repre-
sentation of therelativespectrum of the source acceleration.
Absolute source spectrum values, where required, were esti-
mated. Figure 6 shows a typical source spectrum obtained at
the backload for a high source strain level. It is rich in har-
monics. Because Meeganet al. had an exceptionally clean
source signal~see their Fig. 3!,1 we presume that the bond
between transducer and rock had degraded since the earlier
work. Such a rich source spectrum had an unexpected effect
on the results; harmonics at the source tended to mask what-
ever nonlinear effects we might have seen. In fact, the pres-

FIG. 7. Model calculations~circles! and measured acceleration spectra~solid lines! for an intense tone burst traveling down the large sandstone rod. Order of
spectra is left to right, the upper left hand corner corresponding to the spectrum taken 2.5 cm from the source. Pinducers are separated by 5 cm thereafter.
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ence of source harmonics changed the experimental results
dramatically~which will be discussed subsequently!.

If the spectrum at the backload is taken as the source
function for Van Den Abeele’s7 numerical method andb, d,
andQE are chosen to be 500, 13107, and 10, respectively,
we can make the comparison shown in Fig. 7. Predicted
theoretical spectral levels at each harmonic are indicated
with circles, and the measured spectra are shown as solid
lines. Two things should be noted. As we commented earlier,
source harmonics masked nonlinear effects, i.e., the values of
b and d chosen above were small enough that they had no
effect on the model calculations.20 Second, measured peak
values at the various harmonics seen in the figure fluctuate
around the predicted level. This behavior illustrates the prob-
lem of site response. Our solution to the site response prob-
lem is discussed in detail in the Appendix.

Rather than repeating more experiments on the large bar
or remounting the source, we performed additional experi-
ments on a somewhat smaller sample. The same source con-
figuration was used on the small bar as on the larger bar.
Unfortunately, we were unable to produce a clean, relatively
monotonal source pulse like that shown by Meeganet al.
However, certain source frequencies proved to be better
choices than others. Figure 8 shows a typical spectrum from
a 12.4-kHz source obtained from a B&K 4374 accelerometer
mounted on the Ta backload with the bar in air. It should be
noted that the resonance frequency of the B&K 4374 accel-
erometer is somewhat lower than the accelerometers nor-
mally used~B&K 8309! so the upper frequency end of the
spectrum—from about 40 kHz on—is somewhat enhanced.
However, we were interested only in the behavior of the
second and third harmonics, which were safely in the lower
end of the spectrum. Maximum source levels were estimated
to be about 10 dB lower than the maximum levels reported
by Meeganet al.; peak strain amplitudes are about 531027.
The second harmonic shown in this figure is about 10 dB
lower than the fundamental; on the other hand, the third har-
monic at 37.2 kHz is much lower and is, in fact, hard to
identify. The peak at 40 kHz~which is not a multiple of the

source frequency! may be due to resonance of the PZT disk
which has a designed center frequency of 40 kHz. Spectra
taken at the backload in vacuum were similar although sec-
ond and third harmonic levels were usually higher than the
out-of-vacuum spectra.

Spectral ratios as a function of distance at various source
frequencies were obtained with the small rod in vacuum. In
all cases, backload source spectra indicated a distorted
source and were similar to the spectrum shown in Fig. 8.
Figures 9~a! and~b! show plots of fundamental, second, and
third harmonic spectral ratios~denoted R1, R2, and R3! ver-
susdistance for drive frequencies of 13 and 14 kHz, respec-
tively. In both cases the second harmonic at the source was
only about 5 dB lower than the fundamental. The third har-
monic at the source, however, was very low and, in fact, hard
to identify at 13 kHz~39 kHz!. Both figures show a second
harmonic that does not grow~a! or grows just slightly~b!.
This is not an unexpected result considering the large second
harmonic in the source spectrum.6 Both figures do, however,
show strong third harmonic growth with distance. For com-
pleteness, the spectral ratios for the fundamental are also
shown in both plots; in both cases the lines are nearly flat.

FIG. 8. Source spectrum taken at the source backload of the small bar in air
with a B&K 4374 accelerometer. Driving frequency was 12.4 kHz.

FIG. 9. Spectral ratios as a function of propagation distance for fundamental
~circles!, second~squares!, and third~triangles! harmonics. Source frequen-
cies were~a! 12 kHz and~b! 13 kHz, and source strain amplitude estimated
at 331027. All data were taken with the rod in a vacuum of at least 10
mTorr.
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This behavior also is expected based on simulations. Other
in-vacuum results are similar to those shown here.

Finally, we made measurements of the spectral ratios as
a function of distance for the second and third harmonicsout
of vacuum. Source spectra were typically cleaner than those
taken with the bar in vacuum. Figure 10~a! shows a plot of
spectral ratios obtained with the source spectrum shown in
Fig. 8 ~12.4-kHz fundamental!. Spectral ratios for the second
and third harmonic are denoted R2 and R3. The two lines
~least-squares fits! are shown to guide the eye and do not
necessarily represent the true functional dependence of spec-
tral ratio on distance; the errors in the method and sparseness
of data do not allow us to deduce the exact functional forms.
However, the error barsare significantly smaller than the
spread in each case and both harmonics are growing with
distance. Figure 10~b! shows a simulation of the experiment
using the numerical model with values ofb, d, andQE of
400, 23108, and 55, respectively. The results are very simi-
lar, especially considering the uncertainties in~1! determin-
ing the true source function and~2! exciting pure small sig-

nal waves at the second and third harmonic frequencies and
determining source levels. Although we believe other non-
linear effects must be accounted for in the model, these re-
sults clearly show that the nonlinearity inherent in rocks
manifests itself at levels even lower than initially reported by
Meeganet al.

V. SUMMARY AND CONCLUSIONS

The results of several experiments examining linear and
nonlinear wave propagation in two Berea sandstone rods
have been reported and compared with a numerical model.
Small amplitude wave speeds were measured in both
samples, both in and out of vacuum and found to range from
2600 to 1900 m/s. Small signal attenuation was also mea-
sured and varied considerably, depending on whether the
sandstone bar was inside or out of vacuum. Values ofQE

ranged from 10~large sample in air! to 150~small sample in
vacuum!. Measurements were made of higher strain ampli-
tude waves too. Nonlinearity is clearly evident in our mea-
surements. Most of the new measurements were obtained
using a smaller, thinner rod than the study by Meeganet al.1

and, since the detectors were surface mounted, wave scatter-
ing was not a problem. Remarkably, propagation of waves
with peak strain levels of only 531027 ~10 dB lower than
levels used in Meeganet al.! clearly show the effects of non-
linearity. The results also clearly show both secondand third
harmonic growth. A numerical algorithm6 which includes
second-order nonlinear constants in the equation of state was
used to compare with the data presented here and the results
are very good. The data presented here nicely complement
and greatly add to the data presented by Meeganet al.

Comparison of measurements and calculations, how-
ever, strongly suggest that the current theory is incomplete.7

Moreover, considerable evidence from resonance and static
stress–strain studies on similar materials suggests that hys-
teresis and end point memory3,5 likely play prominent roles
in wave propagation in earth materials such as rock. Some
preliminary numerical work by Van Den Abeele21 is prom-
ising. He has added hysteresis in his model and has shown
that harmonics at levels we have observed in these measure-
ments can easily be generated without requiring larged’s.
Work is continuing along these lines.
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APPENDIX: SITE RESPONSE AND SPECTRAL
RATIOS

Measurements with earth materials are typically much
more difficult than those conducted in air or water. Site re-
sponse, the variation in signal intensity due to local inhomo-
geneity and detector coupling, is a well-known problem in
seismology, and laboratory experiments on solids share some
of the same difficulties. In seismology, the observed spec-

FIG. 10. ~a! Spectral ratios as a function of propagation distance for second
~squares! and third~triangles! harmonics. Source frequency was 12.4 kHz,
source strain amplitude estimated at 231027. Bar was in air. Lines are
least-squares fits to guide the eye.~b! Calculated spectral ratios for values of
b, d, andQE of 400, 23108, and 55, respectively.
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trum at a ground location is often expressed as the true
source spectrum~at depth! passed through a series of linear
filters. Filters that are often used include instrument re-
sponse, propagation path response, geometric spreading,
source radiation response, etc.22 In our 1-D rod experiments
we need only correct for source, instrument, and path re-
sponse~including attenuation, nonlinear response, etc...!. At-
tenuation along the propagation path is relatively easy to
determine. However, accelerometer site response is not. Ide-
ally, if the mounting is perfect, the B&K accelerometers
have a flat response to 54 kHz. However, a perfect mounting
is rarely possible, especially on porous sandstone rods. Im-
perfect mounting will lower the resonance frequency and al-
ter the expected accelerometer frequency response. More-
over, the rod itself is anisotropic and not perfectly
homogenous so different mounting points will yield slightly
different accelerations. The problem is even more trouble-
some with the pinducers as they are not calibrated.23 Figure 7
shows the effects of site response; variations of the spectra
from site to site are obvious at any frequency.

A widely applied method used for eliminating site re-
sponse in seismology is the method of spectral ratios. In
earthquake studies for example, the effects of wave travel
paths, attenuation, and seismometer variations can be can-
celled by taking the ratio of a large earthquake spectrum to a
much smaller earthquake spectrum from the same source
location.22 We have adapted the technique to eliminate the
site response problem in our laboratory experiments as fol-
lows. Assume for simplicity that we have a source whose
spectrum consists of a single line at frequencyf 1, i.e., a
monotonal source. The measured small-strain spectral level
for this lineM ( f 1 ,xi) from an accelerometer at a distancexi
from the source can be represented as the source spectrum
S( f 1) passed through two linear filters:

M ~ f 1 ,xi !5A~ f 1 ,xi !C~ f 1 ,xi !S~ f 1!, ~A1!

where A( f 1 ,xi) is the filter representing the attenuation
evaluated atf 1 and C( f 1 ,xi) is the filter representing the
detector site response evaluated atf 1. If we supply a second
monotonal source spectrumS8—at the same frequency but at
a different small-strain amplitude—the same filters apply and
the ratio of the two measured spectral lines is simply

R~ f 1!5
M 8~ f 1 ,xi !

M ~ f 1 ,xi !
5
S8~ f 1!

S~ f 1!
. ~A2!

In this case~two linear source functions!, R is a constant for
all positionsxi .

Application of the spectral ratio method to a large am-
plitude ~i.e., nonlinear! and small elastic wave signal re-
quires some modification. We therefore use a hybrid ap-
proach. Assume we excite a large amplitude single source
frequencySN( f 1) and measure the resulting nonlinear wave
spectrum~rich in harmonics! M (n f1 ,xi)un51,2,3,... at a dis-
tancexi from the source. Instead of exciting only a low am-
plitude wave atf 1, we also separately excite and measure
small amplitude waves at 2f 1,3f 1 , etc. We then take the
ratio of the appropriate spectral line in the nonlinear signal to

each of the small amplitude harmonics. The measured levels
for each of thelow amplitudesignals, given the source func-
tionsS(n f1) are

M ~n f1 ,xi !5A~n f1 ,xi !C~n f1 ,xi !S~n f1! n51,2,3,...
~A3!

and the measured levels in thenonlinearspectrum given the
source functionSN( f 1) are

MN~n f1 ,xi !5AN~n f1 ,xi !C~n f1 ,xi !SN~ f 1!. ~A4!

Note that we assume site responseC is independent of am-
plitude. The ratio of the measured large amplitude signal
driven at f 1 at thenth harmonic to the low amplitude signal
driven atn f1 is

Rn5
MN~n f1 ,xi !

M ~n f1 ,xi !
5
AN~n f1 ,xi !

A~n f1 ,xi !
FSN~ f 1!

S~n f1!
G . ~A5!

The site responseC is again eliminated and the source ratio
is a constant. The new attenuation ‘‘filter’’ responseAN now
contains the nonlinear propagation effects~e.g., decay of the
fundamental or growth of a harmonic!. For the harmonics
above the fundamental, for example, the ratio
AN(n f1 ,xi)/A(n f1 ,xi) should increase with distance if the
rod responds nonlinearly. This method appears to work very
well in the case of a source that does not emit harmonics.
Indeed, Meeganet al. successfully applied this formulation
to plot the ratioR2 as a function of distance. If nonlinearity
in the material had not been present, the ratio would have
been constant for all pinducer positions. What Meeganet al.
found, however, was that the value of the spectral ratio ap-
peared to grow linearly withx, exactly what classical theory
predicted, a convincing show of nonlinear response in the
material.

A cautionary note: If the source emits harmonics, prob-
lems are introduced into the method. A rich source spectrum
translates to a redistribution of energy within the wave spec-
trum along the path in a complex manner because interac-
tions between all frequencies begins immediately. See Van
Den Abeele6 for more discussion on contaminated sources
and their effects on the simple harmonic relationships.
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