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Abstract 

 

Reliability assessment, system failure and system analysis can involve numerous input 

variables whose values occur over a range of real numbers, rather than a single number.  

Available knowledge of the system is often limited and the available data is usually 

disjoint, the output data of the system is often consistent, with some overlap.  Application 

of existing analysis theories such as probability analysis or Bayesian analysis for the 

aforementioned complex systems may involve a considerable amount of subjectivity on 

the part of the analyst.  Possibility theory is currently being developed to analyze these 

types of systems from a more mathematical perspective rather than a subjective one.   

 

Possibility theory is useful when the information obtained for a system is available as 

intervals, and more importantly as a consonant set of intervals (i.e. nested interval set).  

However Joslyn [8] has shown that a consistent set (see Chapter 2) of intervals is 
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sufficient.  The difficulties arise when the interval set is neither consonant nor consistent. 

The two algorithms studied in this investigation transform non-useful interval sets to a 

more useful form.  Both algorithms are based on a mathematical approach, however they 

do employ a small but significant amount of analyst subjectivity.   

 

The first of these transformation algorithms, was developed by Donald and Ross [4] to 

transform consistent or inconsistent but overlapping data output sets to consonant sets.  

The second algorithm, developed earlier by Joslyn [8, 9], transforms non-consonant data 

to consistent data.  In both algorithms the analyst must select the normalizing interval(s) 

to transform the original set.  In Joslyn’s algorithm [8, 9], only one normalizing interval 

is required while the algorithm developed by Donald & Ross [4] requires a collection of 

normalizing intervals.  Each normalizing interval or group of normalizing intervals 

produces a somewhat different transformed set.  Since little or no prior knowledge is 

available about the system, the analyst’s selection for the normalizing interval(s) is a 

subjective one.  The resulting transformed set may not be the “best” transformed set 

(from the perspective of its likeness to the original set).  Therefore, the objective of the 

current investigation is to eliminate this subjectivity and form an automated approach to 

the algorithms.  A transformed set that is most “like” that of the original set is desired.  

Thus, the ambition of this investigation is to determine a correlation between the 

transformed set (that is most like that of the original set) and its normalizing interval(s).  

This correlation will allow this transformed set to be produced consistently without the 

analyst intervention.   
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The results of this investigation indicate that this normalizing interval should be based on 

its size as well as its plausibility (see Chapter 2).  In the algorithm presented by Donald & 

Ross [4], the size also plays a role but only in the normalizing intervals that are minimal; 

the selection of non-minimal intervals is based on: the maximal inclusion in super-

intervals, maximal plausibility and the maximum number of common elements with the 

entire set.   The results permit the algorithms to be automated, eliminate analyst 

subjectivity, and uniformly produce a transformed set that is most like that of the original 

set.  

 

The two algorithms (due to Joslyn and Donald) are useful in a variety of engineering 

applications.  For instance, the Donald algorithm has been employed in a reliability study 

[13] involving the buckling of hollow, metallic spheres.   Due to the findings of the 

current investigation, applications such as the buckling of hollow, metallic spheres as 

well as other engineering problems can be accomplished in a less subjective and more 

efficient manner.     
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Chapter 1 

 

Introduction 

 

 

1.1 Introduction 

 

In complex systems of limited and vague prior information, such as structural system 

failure, the characterization and modeling of available data can be accomplished with a 

probabilistic analysis; however, this may require a considerable amount of subjectivity by 

the analyst in developing the necessary probability density functions [3].  This is 

especially true when the available data is not well suited for this type of modeling.  

According to Ross [3], due to an increase of higher consequence systems, society is no 

longer willing to accept an “overly optimistic safety analysis.”  This requires a 

characterization and modeling analysis method that circumvents the emphasis on analyst 

subjectivity and uses a more mathematical approach.  Hybrid approaches are now being 

developed to accomplish just that; however, these hybrid approaches are susceptible to 

the same drawbacks of current theories used to model the available information.  It is for 

this reason that efforts are being made to provide the analyst with a comprehensive 

selection of mathematical tools, in an effort to model certain systems and decrease 

analyst subjectivity [3]. 

 

Possibility theory finds its place within this selection of mathematical modeling tools. In 
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casual conversation, Possibility and Probability are often confused and used 

interchangeably, however there is a strong distinction between the two.  A possibility is 

weaker than a probability, an event that is possible doesn’t necessarily imply that it is 

probable; on the other hand an event that is probable does imply that it is also possible.  

Possibility theory is distinct from, but parallel to, probability theory [8].  Possibility 

theory is very useful in complex systems where little prior information or vague 

information is available for the system.  Possibility theory is especially useful for 

modeling complex systems where the evidence is represented as a set of nested intervals 

rather than as a collection of distinct point values.  Perhaps point values could not easily 

be gleaned from tests hence, intervals were reported.   

 

Probability theory can model such systems, but only with a significant amount of reliance 

on analyst subjectivity; however, possibility theory provides natural models where only 

interval data is available, provided certain criteria are met.   

  Figure 1.1a    Figure 1.1b 

18 23 28 18 23 28

 

Consonant   Consistent but Non-consonant 

 

 2



Figure 1.1c    Figure 1.1d 

18 23 28 18 23 28

 

  Overlapping     Disjoint  

A consonant set of intervals (i.e. nested set of intervals) is needed to obtain a possibility 

measure (max value equal to 1); however, Joslyn [8] has proven that a consistent set of 

intervals is sufficient to obtain a normal possibility distribution and thus, a possibility 

measure.  A consistent interval set has a common agreement among its intervals, in other 

words a consistent interval set has a common intersection among the intervals (see 

section 2.3).  The difficulties arise when an interval set is neither a consonant or 

consistent interval set; in this case a normal possibility distribution cannot be obtained 

which produces anything of significance in regards to the possibility.    

 

Donald and Ross [4] have developed an algorithm that transforms a non-nested set of 

interval data to a nested set, of which a normal possibility distribution is obtained.  An 

earlier algorithm developed by Joslyn [8, 9] transforms an originally non-consistent set of 

data to a consistent set of data.  Both algorithms employ a mathematical approach; 

unfortunately, both algorithms contain an empirical step that requires the analyst to make 

some subjective assumptions.  In the consistent transformation algorithm (Joslyn [8, 9]), 

the analyst must select a normalizing interval from a predetermined collection of 
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normalizing intervals.  Each normalizing interval can produce a different transformed 

consistent set.  The same is true for the consonant transformation algorithm (Donald & 

Ross [4]), however a group of normalizing intervals is selected from a predetermined 

collection of intervals; each group producing a different transformed consonant set.   The 

transformed set that is most “like” that of the original set is a desired outcome.  The 

ambition of transformation is to obtain an interval set that will result in a normal 

possibility distribution, and that is most “like” that of the original data.  In other words, in 

addition to obtaining a useful possibility distribution, the total information content 

portrayed by the transformed set should be as close to the total information content 

portrayed by the original set.      

 

1.2 Objective 

 

The objective of the current investigation is to remove analyst subjectivity from both 

transformation algorithms (Joslyn, Donald) and develop an automated approach to the 

algorithms in obtaining the transformed set that is most “like” that of the original set.  

This involves determining the implications that the characteristics of the normalizing 

interval(s) have on the transformed set.  The technical approach will also involve the use 

of established metrics for the determination of the “likeness” and differences in 

uncertainty between the transformed set and the original set.  The resulting values for 

these metrics will support the automation of both transformation algorithms and allow the 

removal of the analyst subjectivity.  Ultimately this will consistently produce a 

transformed set that is most like that of the original set without the reliance on any prior 
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information about the system.                

1.3 Utility 

 

The two transformation algorithms are applicable to a variety of engineering problems.  

For example, Donald algorithm has been employed in a reliability study involving the 

buckling of hollow, metallic spheres (Donald & Ross [4]).  To summarize [13] that 

application, the crushing capacity (or buckling load) of axially loaded manufactured steel 

marine floats is desired.  Figure 1.3a and 1.3b illustrate the actual deformation and the 

finite element deformation analysis, respectively, for these marine floats.  

Figure 1.3a 
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Figure 1.3b 

 
 

In the sphere buckling study [13] a total of 4 input parameters were investigated as 

variables whose values were intervals instead of single quantities, such as Young’s 

modulus, radius of the spherical float, and the thickness of the spherical wall.  Intervals 

for these input parameters were studied, each producing a range of outputs also expressed 

by an interval (i.e. crushing capacity).  The collection of outputs was a non-consonant 

interval set, where Ross [13] applied the consonant transformation algorithm (Donald 

algorithm [4]) to obtain a consonant set and thus a possibility distribution for the output.  

Modeling this particular problem can be approached in a variety of ways, however the 

possibility distribution approach is less computationally expensive when compared to 
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other modeling approaches (i.e. Monte Carlo, mean…mean value analysis, advanced 

mean value analysis) [13].  Consistent transformation (Joslyn[8, 9]) is also applicable in 

this situation.  

 
Possibility distributions, such as the generic one illustrated in Figure 1.3c, relate to 

probability distributions in the sense that a region of unit possibility spans the space of a 

non-zero probability distribution (e.g. a probability density function or pdf), while outside 

of that interval some possibility may still exist in the face of conflicting (or dissonant) 

evidence.  As more data are acquired, the dissonance (represented by the sloping regions 

of the possibility distribution) diminishes and the side boundaries of the possibility 

distribution become steeper.  One possible use of possibility distributions might be, for 

example, to test whether the predictive accuracy of a buckling model based on generic 

uncertainty data is valid for a model of a newly designed component or system. 

 Figure 1.3c.  Relationship between probability and possibility distributions 

x

π or f(x)

0

1.0
possibility

scaled pdf
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• The approach can be used initially for all assessments to determine the regions 

into which more focus should be placed by subsequent probability (standard 

reliability) computations 

• The approach can be used to quantify all variables in the simulation for which 

little or no data exists, or for modeling assumptions for which a probabilistic 

evaluation simply is not warranted since the underlying occurrence of the variable is 

non-random 

• The approach can be used to assess those regions of the output where dissonance, 

or disagreement, exists in previous data or existing analytic judgments or knowledge. 

 

Using the possibility distribution methods, as highlighted by the above findings, it is felt 

that the reliability assessment of structures can be streamlined in terms of cost savings and 

the efficient use of valuable historical data.  The method also allows for the judgments and 

knowledge of the analyst's making the predictions more flexibility in embedding all their 

knowledge–not just the numeric information–into their analyses.  The use of historical 

data to guide our analytic judgments has been used primarily in establishing a sort of 

classification of the appropriate methods and models to apply to any physical system. 

 

This current investigation greatly impacts both transformation algorithms, it not only 

improves the uniformity but it allows the analyst to be removed from the transformation 

algorithms.   This greatly affects the processing of possibility distributions for a variety of 

interval data in engineering applications such as the buckling of hollow, metallic spheres, 
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which can now be accomplished in a more efficient manner and by employing less 

subjectivity. 
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Chapter 2 

 

Background 

 

 

2.1 Chapter Introduction 

 

The following chapter serves to introduce the two transformation algorithms introduced 

in Chapter 1, as well as other metrics used in this research.  In an effort to better 

understand these algorithms some preliminary terms and properties are defined.  

Uncertainty metrics are very important in the assessment of the results; they are described 

in this chapter in detail.  This chapter provides the insight needed for the following 

chapters. 

 

 

2.2 Random Set 

 

Let us first begin by describing a random set (SR) for the purposes of this investigation. 

A random set SR, is a random variable whose value is represented as a set-valued random 

variable, where there is a weight associated with each of these set-valued random variable 

[3].  For example, given a universe of discourse Ω = { }321 x,x,x , then  

SR = { } { }{ }6.0,x,x,4.0,x,x 3221  is a random set on Ω. 
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The current investigation focuses on random interval sets rather than point value data.  To 

clarify this we consider an experiment where the exact results, obtained from an accurate 

and precise digital measuring device, are characterized by a series of distinctive values.  

The frequency of occurrence for each resulting value is determined by dividing the 

number of times a particular value occurs by the total number of resulting values in the 

observation set. Each resulting value is now associated with an inherent frequency of 

occurrence.  [7] 

 

In the previous example the measuring device produced distinctive measurement values; 

such a device is a rarity in real world experiments and the measuring device often reveals 

values that are not so specific or perhaps they are between two clearly marked endpoints.  

A subjective value can be discerned from these endpoints with an associated amount of 

uncertainty; however, in place of this subjective value the interval Aj can be reported 

instead.   

 

The resulting interval-valued random set is referred to as a random interval Α, the 

universe of discourse is now IR. The random interval Α, consists of the intervals Aj and 

their associated frequency of occurrence or weight wj (Α { }jj w,A= ).  Each Aj, 

is a focal element of the focal set F =nj1 ≤≤ { }jA ).  In this investigation the random 

interval is a left closed, bounded real interval [lj, uj), where and are the lower and 

upper bound values of the random interval.  In each interval set, there is an infinite 

number of possible values (i.e. IR).   

jl ju
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The cardinality is defined here as the number of possible elements x, within a given 

subset A and is denoted as |A|.  For the purposes of this investigation we limit the interval 

to discrete intervals with values at every whole number.  In other words, the granularity 

of each interval is 1.  Based on this granularity, the number of elements included in 

interval Aj can be determined by subtracting the lower bound from the upper bound.  For 

instance, a random interval from 8 to 15 ([8, 15)) has a cardinality value of 7, based on 

the above granularity.  Finite discrete intervals are required for the consonant 

transformation as well as many of the metrics used in this investigation; therefore, only 

discrete intervals are used. 

 

 

2.3 Relationships Among Random Intervals 

 

An important characteristic of random sets is consistency among its random intervals, it is 

defined as a common agreement between random intervals; this numerical agreement is 

referred to as a core C .  The core of a random interval set is defined mathematically as: 

 

 C(Α)         (2.3.1) I
Α∈

=
jA

jA

where ∈ , signifies “member of.”  Consider the following intervals: [1, 5), [2, 7) and [3, 

5).  The intervals overlap from 3 to 5, which forms the core.  For a random set to be 

consistent, a core must exist and thus the expression C must not be equal to the null set. 
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     ≠)(C Α Ø 

 

Simply stated the support U, is the interval formed by the union of intervals of the 

random interval set. The support of the random set is defined mathematically as: 

 

         (2.3.2) U
Α

Α
∈

=
jA

jA)(U

 

A random interval set is considered consonant if nesting exists among the random 

interval set, (the intervals Aj are nested, set A1 is included by set A2, …An-1 is included 

by set An) [2].  

       n21 A...AA ⊆⊆

 

Consistency is a weaker property than consonance: each consonant random set is 

consistent but each consistent set is not necessarily consonant [9].  

 

 

2.4 Fuzzy Measure 

  

In a crisp set (A), the elements x are either a members of set A or not.  Thus, the elements 

that are members of A are assigned a membership value of 1 and non-members are 

assigned a value of zero.  A fuzzy set is thus a set containing elements that have 

varying degrees of membership values from 0 to 1 [2].       

)A~(
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A fuzzy measure is a function ]1,0[)A( ∈ν  for any interval A.  The uncertainty of a fuzzy 

measure is in the assignment of the membership [2].   

 

 

2.4.1 Basic Probability Assignment 

  

A function known as a basic probability assignment (bpa), [2] “is the degree of belief that 

a specific element, x, of the universe X belongs to the set A, but not to any specific subset 

of A.”  A power set is the set of all possible sets of the universe X.  In this investigation 

the bpa is determined based on the frequency of occurrence of the observation interval 

and is referred to as the weight or evidence w.     

 

M
n

w i

i

A
A =          (2.4.1) 

 

where, is the frequency count of set (random interval set)  and M is the total 

number of observation sets (random intervals), 

iAn iA

∑ =
i

A ,1w
i

 ∑ =
i

A .Mn
i

 [2]   The weight 

of the set that contains no random intervals, the null set, is zero and the weight of the set 

that contains all possible random intervals, is one.     
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2.4.2 Belief and Plausibility Measures 

 

Consider any interval A, along with its weight w(A).  Based on the evidence w, a fuzzy 

measure known as a belief measure bel(A) is defined as:        

∑
⊆

=
AA

j
j

)A(w)A(bel ,        (2.4.2) 

where interval Aj is equivalent to or included in A, .  If is true, then all 

the evidence supporting A

)AA( j ⊆ AA j ⊆

j is added to the evidence of set A and the sum of these is equal 

to the belief measure.   

 

The plausibility of A (pl(A)) is [2] the total evidence of A plus the evidence in all the 

intervals of the universe that intersects )(∩ with A. 

            (2.4.3) ∑
≠∩

=
ØAA

j
j

)A(w)A(pl

There exists a mutually dual relationship between belief and plausibility, which is 

described by the following: 

)B(bel1)B(pl −=          (2.4.4)  

alternatively, 

)B(pl1)B(bel −=         (2.4.5) 

Where B represents a given interval and B represents the complement of that interval. 

From the above equations it can be shown that whatever the evidence that supports B, the 

plausibility is at least as great as the belief measure [2], i.e.    

)B(bel)B(pl ≤  
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When the evidence is available only on individual elements x of the universe instead of 

interval sets Ai, the belief of x equals the plausibility of x.  The probability measure is 

also a frequency of occurrence, but restricted to the individual elements x.  The individual 

elements are all disjoint, and have no intersections; based on this, as well as the definition 

stated above for the plausibility and belief, the belief equals the plausibility, which equals 

probability.   

 

When the evidence available is consonant (i.e. nested), then for two sets A and B, which 

are members of the power set of the universe P(X), we have the following relationships 

[2]. 

))B(bel),A(belmin()BA(bel =∩       (2.4.6) 

))B(pl),A(plmax()BA(pl =∪       (2.4.7) 

In the first relationship, the belief measure of the intersection of A and B is the smaller of 

the belief measure of either A or B.  In the second relationship, the plausibility measure 

of the union of A and B is the larger of the plausibility measure of A or B.   

 

For a consonant body of evidence, the belief and plausibility measures are referred to as 

necessity N and possibility Π measures, respectively.  Again, the mutually dual 

relationship holds as it did for the plausibility and belief measures; therefore, a necessity 

measure can be described in terms of a possibility measure. [2]   

 

The plausibility trace Aρ is simply a “one point coverage” of the plausibility.  Defined 

mathematically as Aρ { } ∑
∈

==
Ax

j ,w)x(pl:  where Α is a random interval and ρ is a real 
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number from 0 to 1 [8].  In other words, the plausibility trace is a mapping of the 

plausibility of the singleton elements, x of the random set Α to the unit interval.  For 

consonant sets the plausibility trace becomes the possibility distribution. 

   

2.4.3 Possibility Measure 

 

Lets begin with a possibility distribution (or xr π ), which is a mapping of the singleton 

elements, x of random interval set Α to the unit interval.  From the possibility 

distribution  is a weak likelihood of events can be described by the use of a set function 

called the possibility measure 

,π

Π [7].  A fuzzy measure is a possibility measure when [4]: 

(1) the possibility measure of the null set is zero, (2) for all A and B members of universe 

X, and if A is included or equal to set B then the possibility measure of A is less than or 

equal to that of B, and (3) for a nested sequence of sets Ai to An the possibility measure 

of Ai is the largest of the possibility measure of the sets included in Ai. 

(1)  0)Ø( =Π

(2)  if  ,XB,A ∈∀ BA ⊆ )B()A( Π≤Π   and, 

(3) For any increasing sequence  ,AAA n21 ⊆⊆ K )A(sup)A( i
Ii

i Π=Π
∈

 

 

Consider Ai, a member of Α, the possibility measure is the largest of the possibility 

distribution in Ai (given that Α is consonant),   

)Ax|)x(rsup()A( ii ∈=Π .       (2.4.8) 
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When Π(Ai) = 1, it is totally possible the true value of x is in Ai.  Similarly when Π(Ai) = 

0 it is impossible that the true value of x is in Ai.   

 

 

2.5 Normalization Algorithms 

 

The focus of this investigation deals with two algorithms: (1) proposed by Ross and 

Donald [4] that forms a consonant set from non-consonant interval data, and (2) proposed 

by Joslyn [9] that forms a consistent set from an inconsistent random set.   

 

  

2.5.1 Consonant Transformation 

 

For a consonant interval set, a normal possibility distribution is readily obtained of which 

possibility measures are thus determined.  A non-consonant set does not naturally 

facilitate the determination of a normal possibility distribution.  A consonant interval set 

is thus desired and the algorithm proposed by Ross and Donald [4] transforms a non-

consonant random set of data to a consonant set of data, a normal possibility distribution 

is then obtained for the consonant random set.   Their algorithm is summarized below.     

 

Suppose that a system is described within a domain Ω = {w1, w2, …wn}, the behavior is 

described by evidence obtained over a collection of sets, A. Where A is a subset of Ω. 

This collection of evidence forms a vector ,F
r

 comprised of the observation set and its 
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weight.  Suppose, it is determined that F
r

is non-consonant and that we wish to transform 

it to a consonant set.  The first step, is to determine the intersections of the various 

intervals .  The smallest of these intervals has the most intersections with 

the observations and the next smallest is the one with the second most intersections, and 

so forth.  Also included in this set is an interval equivalent to the support, if it is not 

already present.  This interval is composed of the minimum lower-bound value and the 

maximum upper-bound value of the observation set.  Hence, the algorithm is also 

applicable to disjoint sets as well as other non-consonant interval sets (i.e. consistent but 

non-consonant, overlapping but non-consistent).   

ijji BAA =∩

 

The weight of these focal elements is based on the minimum norm, ( )
ji AAij w,wminv = .   

A minimum norm is based on non-additivity and the weights do not necessarily add to 

one; therefore, the weights derived are normalized as, 

∑
=

=η Q

1i
ij

ij

v

v
           (2.5.1) 

The weight of the interval comprising the support, if not already present, is based on the 

minimum of the weight present in the observation set. This process yields a vector 

)v,B(G ijij=
r

of comprised of the intersections and their respective weights, some of 

which are consonant with their parent set while not necessarily consonant with other 

parent sets.  The total number of focal elements in G
r

is denoted as Q, the number 

elements in the designated consonant set H is denoted as QH, and the number of elements 

in the designated non-consonant set I is denoted as QI.  The focal elements of G compose 
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the focal set. In this step the analyst’s subjectivity is required if there are more than one 

group of possible choices to place in the consonant set.   

 

G
r

 also contains a min-max interval which is composed of the minimum lower bound and 

the maximum upper bound of Α.  This additional interval is included if no equivalent 

interval is present as a random interval.  Due to an increase in intervals, the sum of the 

weight for the intervals in G may no longer be normal; therefore, the weights must be 

normalized.  (Keep in mind that a simpler 

r

G
r

can be also be formed without determining 

the intersections and only considering the focal elements.)  The elements (intervals) are 

then partitioned into a consonant set H and a non-consonant set I where the focal 

elements of H and I are denoted Hi and Ij, respectively.  The normalized weight of the 

focal elements in set I are distributed to the random interval observations in H.    

 

The redistribution of weight is based on the dissonance between Hi and Ij, where 

dissonance is the conflict between the two sets.  The lower the dissonance the higher the 

similarity β.  Similarity values are calculated for each Hi of H.  This is accomplished by 

determining the number of common elements between the Hi of H and the Ij of I and 

dividing it by the cardinality of the each Hi, denoted |Hi|.  

|H|
|IH|

i

ji
ij

∩
=β           (2.5.2) 

 

Each Hi has Q similarity values, in other words there are QH * QI total similarity values.  

For example, if there are 4 intervals in H and 2 in I then the total number of similarity 
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values is 2 * 4 = 8 or two similarity values for each Hi in QH.   With β the redistribution 

factors k, are calculated.  This is accomplished with the following formula: 

∑
=

β

β
=

HQ

1i
ij

ij
ijk           (2.5.3) 

kij when multiplied by the normalized weight of Ij produces a fraction of weight that is 

distributed to the weight of set Hi.  The redistributed weight of Hi (m) is calculated by 

adding the normalized weight of Hi in the consonant set H to the weight being distributed 

from Ij of the non-consonant set I.  For each Ij, there is a fraction of weight that is 

distributed to each Hi.    

∑
=

η+η=
iQ

1j
jijii )I(*k)H()H(m       (2.5.4) 

From the resulting consonant set and their final weights, a normal possibility distribution 

and measures can be determined.    

 

 

2.5.2 Consonant Transformation Illustrative Example 

 

Donald and Ross [4] present the following example for consonant transformation. 

The observation record is found in the 1st column and the determined weights are found 

in the 2nd column: 

 

 

 21



Table 2.5a 

Interval Weight 
[20, 28) 0.2 
[24, 28) 0.2 
[28, 30) 0.2 
[22, 28) 0.2 
[21, 29) 0.2 

 

Figure 2.5a 

18 22 26 30

Observation Values
 

 

The above intervals are arbitrarily subdivided into two sets, one composed of a consonant 

set and the other a non-consonant set.  Included in the consonant set is an interval that 

includes all the original intervals.  In this particular example there are 2 options for 

normalizing the non-consonant set, however we continue with Option 1 (see Chapter 3 

for Option 2). 

 

Table 2.5b 

Option 1 Option 2 
Hi Ij Hi Ij

[20, 30) [20, 28) [20, 30) [20, 28) 
[21, 29) [28, 30) [20, 28) [21, 29) 
[22, 28)  [22, 28)  
[24, 28)  [24, 28)  
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Since there are only five unique intervals in the original data, then the total weight for 

each arbitrary interval is 1/5 or 0.2.  Note, that an interval including the support is 

included and its weight is the minimum weight of the intervals included in the original 

set.  Each interval occurs only once in the collection of six arbitrary divided intervals (G-

set) thus, each has a normalized weight of 1/6.  

Table 2.5c 

G – Sets  Interval Total Weight Normalized Weight 

[20, 30) 0.2 1/6 
[21, 29) 0.2 1/6 
[22, 28) 0.2 1/6 

QH = 4 

[24, 28) 0.2 1/6 
[20, 28) 0.2 1/6 QI = 2 
[28, 30) 0.2 1/6 

 

There are 4 consonant intervals (Hi), i =1, 2, 3, 4 and 2 non-consonant intervals (Ij), j =1, 

2.  See table 3.2e. 

Table 2.5d 

Hi Ij
[20, 30) [20, 28) 

[21, 29) 

[22, 28) 

[24, 28) 

[28, 30) 

 

β values are now calculated.  

(1) 800.0
10
8

|)30,20[|
|)28,20[)30,20[|

11 ==
∩

=β  

(2)  200.0
10
2

|)30,20[|
|)30,28[)30,20[|

12 ==
∩

=β  
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(3)  875.0
8
7

|)29,21[|
|)28,20[)29,21[|

21 ==
∩

=β  

(4)  125.0
8
1

|)29,21[|
|)30,28[)29,21[|

22 ==
∩

=β  

(5)  000.1
6
6

|)28,22[|
|)28,20[)28,22[|

31 ==
∩

=β  

(6)  0
6
0

|)28,22[|
|)30,28[)28,22[|

32 ==
∩

=β  

(7)  000.1
4
4

|)28,24[|
|)28,20[)28,24[|

41 ==
∩

=β  

(8)  0
4
0

|)28,24[|
|)30,28[)28,24[|

42 ==
∩

=β  

From the β values the redistribution factors (k) are calculated. 

(9)  218.0k
41312111

11
11 =

β+β+β+β
β

=  

(10)  615.0k
42322212

12
12 =

β+β+β+β
β

=  

(11)  288.0k
41312111

21
21 =

β+β+β+β
β

=  

(12)  385.0k
42322212

22
22 =

β+β+β+β
β

=  

(13)  272.0k
41312111

31
31 =

β+β+β+β
β

=  

(14)  0k
42322212

32
32 =

β+β+β+β
β

=  

(15)  272.0k
41312111

41
41 =

β+β+β+β
β

=  
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(16)  0k
42322212

42
42 =

β+β+β+β
β

=  

 

The final weight for each Hi is now calculated using the formula below.   

(17)  ∑
=

η+η=
iQ

1j
jijii )I(*k)H()H(m

Ai Hi

A1 [20, 30) 306.0
6
833.1167.0*)615.0218.0(167.0m ==++=  

A2 [21, 29) 270.0
6
623.1167.0*)385.0238.0(167.0m ==++=  

A3 [22, 28) 212.0
6
272.1167.0*)0272.0(167.0m ==++=  

A4 [24, 28) 212.0
6
272.1167.0*)0272.0(167.0m ==++=  

        ∑= 00.1  

Table 2.5e 

Random Interval Weight 
[20, 30) 0.306 
[21, 29) 0.270 
[22, 28) 0.212 
[24, 28) 0.212 
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Figure 2.5b 

18 22 26 30

Observation Values
 

 

 

 

2.5.3 Consistent Transformation   

 

From a consistent random set a possibility distribution can be obtained and consequently 

possibility measures [8].  Possibility measures can be derived from a consistent but non-

consonant set, however it is more natural to use a consonant set [4].  Joslyn proposed an 

algorithm for transforming an inconsistent random set to a consistent set.  A summary of 

this approach, as employed in this investigation, is given below.  Only the intervals 

formed from the support of the original set are considered as normalizing intervals.  First 

the endpoints of the intervals of the random set are placed into an array , the array is 

then ordered from smallest to largest, and finally the duplicate endpoints are removed 

from the array forming E of non duplicate endpoints (e

E&

1, e2, e3, e4…en).  From E a class 

= {GΓ k}, is formed which is the finest partition of the support of the random set.   Gk are 

the intervals formed from the endpoints in array E (G1 = [e1, e2), G2 = [e2, e3)…Gn = [en-

1, en )).   The plausibility of each interval of Γ is found using the plausibility assignment 
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(plausibility trace), which is a one point coverage or the trace of the plausibility over S 

(support of Α).  For further details on this method see [8, 9]. 

 

For an inconsistent random set, the plausibility trace is subnormal (the max value is less 

than one); for a consistent or consonant set the plausibility trace is normal (max value is 

equal to one).  In a consonant or consistent set the plausibility trace will achieve a value 

equal to one for the point or interval encompassing the core. 

 

The inconsistent set is made consistent by selecting a normalizing interval from Γ to 

transform the inconsistent set.   The operations on the Gk portions are different from the 

operations on focal sets of the random set due to the linear ordering of the real line IR.  

Therefore, the Gk’s are utilized in the following operations.  A concatenation operation is 

used to unite two intervals to form set I, which result in an ordered sequence of Gk’s (see 

[7, 8]).  

 = GI u

l

I
Ik=U& k         (2.5.5)  

The concatenation U of the normalizing interval G&
K and the focal sets of Α to form the 

transformed consistent random intervals .   jÂ

jÂ :=  GjA U& K        (2.5.6) 

As stated above, only the elements that make up Γ are considered as possible normalizing 

intervals.  The weight of these consistent intervals , is determined using the 

following proposition.   

)I(m̂K
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=)I(m̂K ,)GGG(mu

l ll

I

Ik k1II∑ = + L   Iu = K, Case 1     

  I=)I(m̂K ,)GGG(mu

l u

I

Ik I1kk∑ = + L l = K, Case 2 

=)I(m̂K  m(I),            Il < K < Iu, Case 3 
=)I(m̂K  0,                       otherwise, Case 4 

 
From the evidence the transformed plausibility assignment is determined for each of the 

normalized intervals that make up the normalized focal set.  The possibility histogram 

and consequently a possibility distribution can be determined from the consistent 

normalized set.   

 

 

2.5.4 Consistent Transformation Illustrative Example 

 

The following example is illustrated by Joslyn [9], given the following observation 

record,  

Table 2.5f 

Interval 
[1, 2) 
[1, 2) 

[2, 2.5) 
[3, 4) 

[3.5, 4) 
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Figure 2.5c 

0.5 1.5 2.5 3.5 4.5

Observation Values
 

It is determined to be non-consistent and a consistent interval set is desired.  The resulting 

random interval set is as follows. 

 

Table 2.5g 

Random Interval Weight 
[1, 2) 0.4 
[2, 2.5) 0.2 
[3, 4) 0.2 
[3.5, 4) 0.2 

 

As stated above, only the intervals Gk from the class  Γ = {Gk}, are considered as 

normalizing intervals.  The following are the available normalizing intervals:  

Table 2.5h 

Gk Partition Plausibility Trace 
G1   [1, 2) 0.4 
G2  [2, 2.5) 0.2 
G3  [2.5, 3) 0.2 
G4  [3, 3.5) 0.2 
G5  [3.5, 4) 0.4 

 

Consider G4 as the normalizing interval.  Table 2.5i contains the normalized intervals 

obtained from the concatenation step.   
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jÂ :=  GjA U& K 

Table 2.5i 

Interval ( ) jÂ
[1, 3.5) 
[2, 3.5) 
[3, 4) 
[3, 4) 

 

The weight is obtained using the following proposition: 

=)I(m̂K ,)GGG(mu

l ll

I

Ik k1II∑ = + L   Iu = K, Case 1     

  I=)I(m̂K ,)GGG(mu

l u

I

Ik I1kk∑ = + L l = K, Case 2 

=)I(m̂K  m(I),            Il < K < Iu, Case 3 
=)I(m̂K  0,                       otherwise, Case 4 

Keep in mind that the intervals , are an ordered sequence of GjÂ k’s, = UI & Iu
lIk= Gk.   

For I = [1, 3.5), K = 4 = Iu, case 1 is applied as follows 

=)I(m̂K  m(G1) + m(G1G2) + m(G1G2G3) + m(G1G2G3G4) 

 =  m([1, 2)) + m([1, 2.5))  + m([1, 3)) + m([1, 3.5)) 

 = .4 + 0 + 0 + 0 = 0.4 

For I = [3, 4), K = 4 = Il, case 2 is applied as follows 

=)I(m̂K m(G5) + m(G4G5) 

 = m([3.5, 4)) + m([3, 4)) 

         = 0.2 + 0.2 = .4 

For I = [2, 3.5), K = 4 =Iu, case 1 is applied as follows 

=)I(m̂K m(G2) + m(G2G3) + m(G2G3G4) 
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 = m([2, 2.5)) + m([2, 3)) + m([2, 3.5)) 

       = 0.2 + 0 + 0 = 0.2 

Thus, the transformed consistent set is as follows. 

Table 2.5j 

Random Interval Weight 
[1, 3.5) 0.4 
[2, 3.5) 0.2 
[3, 4) 0.4 

 

 

Figure 2.5d 

0.5 1.5 2.5 3.5 4.5

Observation Value
 

  

 

 

2.6 The “Best” Alternative 

 

As human beings, we constantly encounter situations where we must make a decision 

from a given set of alternatives.  Each alternative may pose a different outcome; it is 

often beneficial to base our decision on the intended outcome of the alternative.  The 

same can be said for the situation encountered in this investigation.  In the Ross & 

Donald algorithm [4], different possibility histograms and thus possibility distributions 
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result when different groups of intervals are placed in the consonant set H and non-

consonant set I.  The same is true for Joslyn’s algorithm [8]; different normalizing 

intervals may produce different possibility histograms.  Which of the resulting 

transformed sets is the “best” alternative?  An obvious conjecture would be the 

transformed set that preserves and highly reflects the information of the original set.  

 

The resemblance between the transformed set and the original set can be determined by 

comparing the plausibility trace of the original set and the plausibility trace of the 

transformed set.  This can be done using any of the various distance or similarity metrics 

available.  The plausibility trace of a consonant set is equivalent to the possibility 

histogram and thus possibility distribution.  For a consistent but not consonant set, the 

plausibility distribution is equivalent to the possibility histogram from which the 

possibility distribution can be obtained (see [9]).  It may also be beneficial to compare the 

overall uncertainty of the transformed set.  According to Klir and Wierman [6], only three 

types of uncertainties are recognized in the available theories of classical set theory, 

fuzzy set theory, probability theory, possibility theory, and evidence theory.  These 

uncertainty types are: fuzziness (or vagueness), which is associated in imprecision of the 

boundaries; nonspecificity (or imprecision), which is associated with the size of the 

available alternatives in the set; and strife (or discord), which is associated with conflict 

among data [6].   
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2.6.1 Resemblance  

 

In this investigation the resemblance or closeness between the plausibility trace of the 

original set and the plausibility trace of the transformed set is measured by using the 

Hamming distance [5] and a similarity metric (which uses the inner and outer 

product)[2].    Recall, that the granularity is equal to 1, this produces discrete sets and 

allows the application of Hamming Distance metric and Similarity metric.  

 

The Hamming distance metric, measures the distance between two membership 

functions, or in this investigation between two plausibility traces .and B~A~ ρρ  

 )A(f ∑
∈

ρ−ρ=
Xx

B~A~ )x()x( .       (2.6.1) 

Where the smaller the value of distance produced the closer the plausibility traces are. 

Recall that for consistent sets, the plausibility trace becomes a possibility distribution. 

 

For the similarity metric, either the average or the minimum value of the inner product of 

the fuzzy vectors A~
r

and  and the outer product of the complement of ,B~
r

A~
r

and ,B~
r

 is 

determined (here the former is used).  In this investigation, the fuzzy vector A~
r

is 

composed of the plausibility trace values for members of the fuzzy set whereas the 

complement of the fuzzy vector 

,A~

A~
r

 denoted A~
r

 is composed of the membership values 

A~
ρ  for the members of the complement.  Since the fuzzy vectors, plausibility trace vector 
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)A~(
r

and possibility distribution )B~(
r

, being compared are taken from a discrete set we will 

denote the vectors simply as A~  and B~ .  The inner product of A~  and B~ is defined as 

follows: 

       (2.6.2) ))).x(),x((min(maxB~A~ iB~iA~
n

1i

T ρρ=•
=

 

The outer product of the compliment is defined as follows: 

 ))).x(),x((max(minB~A~ iB~iA~

n

1i

T ρρ=⊕
=

     (2.6.3) 

  

The similarity measure is defined as 

 [ )B~A~()B~A~(
2
1)B~,A~( T

2 ⊕+•= ]      (2.6.4) 

When this value approaches 1, the two fuzzy sets are “more closely similar;” and when 

the value approaches 0, the two are “more far apart” (dissimilar) [2]. 

   

 

2.6.2 Measures of Uncertainty 

 

The amount of uncertainty in evidence is useful in determining which set of information 

has the least conflict among its members, and which set is the most specific.  In evidence, 

the lower the value of Nonspecificity the more specific the information is.  In the manner, 

the lower the value of Strife the lower the conflict among members of the set.   

Klir and Weirman [6] describe one form of uncertainty emerging in evidence 
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“whenever we know some alternative of interest belongs to a particular set of 

alternatives, but we do not know which one in the set it is (we do not know which 

alternative it is).  To identify this alternative in question, we need information by 

which the uncertainty is completely removed.  The amount of uncertainty 

associated with a set of alternatives may thus be measured by the amount of 

information needed to remove the uncertainty.” 

A measure of this type of uncertainty in finite crisp sets (classical theory), was first 

proposed by Hartley [6].  This measure is determined through a function known as the 

Hartley function (measured in bits).   

H(SR) =         (2.6.5) |S|log R2

  

The Hartley function, is applicable to a random set SR where the variable is represented 

as individual elements x rather than interval sets (probabilities).  

   

U-uncertainty, proposed by Higashi and Klir [6], is used to measure the same type of 

uncertainty as Hartley but for fuzzy sets or possibility distributions.  For any normal 

fuzzy set ( A~ ) defined on a finite universe by using the α -cuts of F and the cardinality of 

the -cuts.     α

 U( A~ ) ∫ α=
1

0 2 |A~|log αd        (2.6.6) 

A possibility distribution is a membership function of some fuzzy set [7]; therefore, this 

form of U-uncertainty may also be applicable to possibility distributions (possibility 

histograms).  This measurement of uncertainty can also be applied to evidence theory and 
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is denoted N-uncertainty [6].  This measure uses available evidence of the random 

intervals A and its cardinality  

              (2.6.7) ∑
∈

=
RSA

2 |A|log)A(w)m(N

where <A, w> is an arbitrary body of evidence.  Klir and Weirman [6] view this function 

as a reasonable measure of nonspecificity.   

 

Conflict among a body of evidence arises when the focal elements of the body of 

evidence do not necessarily agree with one another.  Shannon proposed a function 

(denoted Shannon entropy) that measures this uncertainty; however, it is only applicable 

to probability measures [6].  In evidence theory, there is no generalized counterpart to 

Shannon entropy.  Some function for the measurement of this uncertainty in evidence 

have been proposed, such as: conflict C(w), dissonance E(w), discord D(w), and strife 

St(w) [6].  The function E is defined by the following formula 

∑
∈

−=
FA

2 )A(pllog)A(w)w(E .       (2.6.8) 

For any consistent focal set, the value of E will be zero, the plausibility of each focal set 

will be one and thus .  C is a better measure of conflicting evidence, however, it 

does not properly scale each particular conflict between two focal sets A and B [6]. 

01log2 =

       (2.6.9) ∑
∈

−=
FA

2 )A(Bellog)A(w)w(C

This drawback is overcome with the function D, 

 D(w) = ∑ ∑
∈ ∈

∩
−

FA FB
2 |B|

|BA|)B(wlog)A(w .               (2.6.10) 
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However, a defect was apparent with this function when dealing with focal set A being 

contained within focal set B ( ); w(B) is taken to be in conflict with w(A) to a 

degree |B-A|/|B|.  B implies A and there should be no conflict present between A and B 

since A is contained in B. Thus, strife has been proposed as a better measure of conflict 

[6], 

BA ⊂

 ∑ ∑
∈ ∈

∩
−=

FA FB
2 |A|

|BA|)B(wlog)A(w)w(ST               (2.6.11) 

 

 

2.6.3 Aggregate Uncertainty 

 

It would be beneficial to obtain a measure of the combined uncertainty (nonspecificity 

and conflict).  Unfortunately merely adding these results of uncertainty is questionable 

(see [10]); as a result, a function has been proposed to measure aggregate uncertainty 

(AU) in evidence.  This function is supposed to capture both nonspecificity and conflict. 

An algorithm has been developed from the belief function to calculate aggregate 

uncertainty and the steps taken are repeated here [6]. 

Algorithm 2.6.1 

Input: For a body of evidence defined on X, and the belief measure bel on X. 

Output: , ∑
∈

−=
Xx

x2x plogp)bel(AU ,0pi ≥ ,1p
Xx

x =∑
∈

 and for all ∑
∈

≤
Ax

xp)A(bel

           . XA ⊆≠∅

Step 1.  Find a non-empty set  such that ,XA ⊆
|A|
)A(bel is maximal. If there are more 

            than one such sets, take the one with the maximal cardinality |A|. 
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Step 2.  For  put ,Ax ∈
|A|
)A(belpx = . 

Step 3.  For each  put bel(B) = ,AXB −⊆ ).B(bel)AB(bel −∪  

Step 4.  Put X = X – A. 

Step 5.  If  and then go to step 1. ∅≠X ,0)X(bel >

Step 6.  If bel(X) = 0 and ,X ∅≠  then put 0px =  for all .Xx ∈  

Step 7.  Calculate ∑
∈

−=
Xx

x2x plogp)bel(AU  

When dealing with a consonant body of evidence the algorithm above can be 

substantially simplified using the possibility distribution [6]. The simplified algorithm is 

repeated here ( r=π , possibility distribution).   

Algorithm 2.6.2 

Input:  = π n21 ,, πππ K , where n is a member of the set of positive integers.  

Output: AU( ), for pΠ i where i is a member of the set of integers from 1 to n, such that        

  with for all i from 1 to n, and  ∑−=Π ,plogp)(AU i2i 0pi ≥ ,1pn

1i i =∑ =

∑ ∈
Π≤

Ax x )A(p  for all .XA ⊂≠∅   Where is the possibility measure of focal 

 set A. 

Step 1.  Let j = 1 and . 01n =π +

Step 2.  Find maximal { }n,,1j,ji K+∈  such that 
j1i
1ij

−+

π−π +  is maximal. 

Step 3.  For  put { }i,,1j,jk K+∈
j1i

p 1ij
k −+

π−π
= + . 

Step 4.  Put j = i + 1. 
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Step 5.  If i < n, then go to step 2. 

Step 6.  Calculate ∑ =
−=Π

n

1i i2i plogp)(AU  

In an effort to compare the resulting transformed sets, metrics of inherent uncertainty 

must be used.      

 

 

2.6 Chapter Summary 

 

This chapter introduces and describes the terms, properties, algorithms, similarity, 

distance, and uncertainty metrics used or developed in this investigation.  The chapter 

begins by defining a random set and other terms associated with a random set such as 

random interval, weight, and cardinality.  Properties such as consistency and consonance 

are also defined, as well as the core and the support of a random set.  A fuzzy measure is 

introduced and it is shown that plausibility, belief, probability and possibility measures 

are special types of fuzzy measures.  The chapter goes on to discuss the two 

transformation algorithms used in this investigation; the first transforms a non-consonant 

interval set to a consonant set and the second transforms an inconsistent interval set to a 

consistent interval set. Uncertainty measures are used to assess the resulting transformed 

sets.  This chapter serves to acquaint the reader with essential information related to this 

study.       
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Chapter 3 
 

 

Consonant and Consistent Transformation Algorithms 

 

 

 

3.1 Chapter Introduction 

 

The transformation algorithms proposed by Ross & Donald [4] and Joslyn [7,8] serve as 

tools to transform a non-consonant random set to a consonant random set or inconsistent 

random set to a consistent set, respectively.  Software has been developed using the C++ 

language that incorporates these algorithms and allows the transformed sets to be 

obtained more readily and thus make this study more efficient.      The following chapter 

demonstrates the utility of these algorithms along with some illustrative examples.    

 

 

3.2 Possibility Histograms 

 

Joslyn [7] describes a possibilistic histogram as a possibility distribution derived from 

consistent empirical random intervals.  They are derived from overlapping interval 

observations and governed by the mathematics of random sets. All possibilistic 
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histograms are fuzzy intervals.  The desired outcome of the above transformation 

algorithms is a normal possibility distribution. 

 

 

3.3 Transformation Algorithms 

 

As mentioned previously, the transformation algorithms in this study serve to transform 

non-consonant or inconsistent random sets to more useful form.  A possibility histogram 

and thus possibility measures can be obtained from the consistent random set [9].  The 

same is true for a consonant set (also consistent); however, the possibility measure is 

obtained more naturally [4].  

 

3.3.1 Software 

 

The software developed herein calculates the plausibility trace values over the support for 

a given interval set of data.  The original data record is all that the software requires.  The 

original interval set may be inconsistent, inconsistent and disjoint, non-consonant, or 

consonant.  For an inconsistent and disjoint interval set, the software defaults to the 

consistent transformation algorithm; for an inconsistent but overlapping interval set, the 

software prompts the user to select which transformation approach to utilize; for a 

consistent set, the software defaults to the consonant transformation algorithm; finally for 

a consonant interval set, the software readily obtains the plausibility trace distribution 

from which the possibility distribution is obtained.   
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3.3.2 Consistent Transformation 

 

As mentioned in Chapter 2, consistent transformation is made possible through the use of 

a designated normalizing interval GK.  Based on GK, the set of normalized intervals and 

their weights are obtained.  The consistent transformation algorithm is demonstrated here 

with the following example proposed by Joslyn [8].  The intervals are "left end closed" 

and continuous. 

Example 3.1 

The following example is illustrated in Chapter 2 however in this case a different 

normalizing interval is used.  Given the following measurement record consisting of only 

the observation interval sets, the weight for each interval set is calculated based on the 

frequency of occurrence of each interval (see Chapter 2).   

Table 3.1a 

Interval 
[1, 2) 
[1, 2) 

[2, 2.5) 
[3, 4) 

[3.5, 4) 
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Figure 3.1a 

0.5 1.5 2.5 3.5 4.5

Observation Values
 

The resulting random interval set is as follows. 

 

Table 3.1b 

Random Interval Weight 
[1, 2) 0.4 
[2, 2.5) 0.2 
[3, 4) 0.2 
[3.5, 4) 0.2 

 

The above set contains no core and thus is inconsistent; however, it can be transformed to 

a consistent set using a normalizing interval.  As stated in Chapter 2, only the intervals Gk 

from the class  = {GΓ k}, were considered as normalizing intervals.  The following are 

considered as normalizing intervals:  

Table 3.1c 

Gk Partition Plausibility Trace 
G1   [1, 2) 0.4 
G2  [2, 2.5) 0.2 
G3  [2.5, 3) 0.2 
G4  [3, 3.5) 0.2 
G5  [3.5, 4) 0.4 
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Consider G3 as the normalizing interval.  Table 3.1d contains the normalized intervals 

obtained from the concatenation step.   

jÂ :=  GjA U& K 

Table 3.1d 

Interval ( ) jÂ
[1, 3) 
[2, 3) 

[2.5, 4) 
[2.5, 4) 

 

The weight is obtained using the following proposition: 

=)I(m̂K ,)GGG(mu

l ll

I

Ik k1II∑ = + L   Iu = K, Case 1     

  I=)I(m̂K ,)GGG(mu

l u

I

Ik I1kk∑ = + L l = K, Case 2 

=)I(m̂K  m(I),            Il < K < Iu, Case 3 
=)I(m̂K  0,                       otherwise, Case 4 

Keep in mind that the intervals , are an ordered sequence of GjÂ k’s, = UI & Iu
lIk= Gk.   

For I = [1, 3), K = 3 = Iu, case 1 is applied as follows 

=)I(m̂K  m(G1) + m(G1G2) + m(G1G2G3)  

 =  m([1, 2)) + m([1, 2.5))  + m([1, 3)) 

 = 0.4 + 0 + 0 = 0.4 

For I = [2, 3), K = 3 = Iu, case 1 is applied as follows 

=)I(m̂K m(G2) + m(G2G3) 

 = m([2, 2.5)) + m([2, 3)) 

         = 0.2 + 0 = .2 

For I = [2.5, 4), K = 3 =Il, case 2 is applied as follows 
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=)I(m̂K m(G5) + m(G4G5) + m(G3G4G5) 

 = m([3.5, 4)) + m([3, 4)) + m([2.5, 4)) 

       = 0.2 + 0.2 + 0 = 0.4 

The software follows the above procedure (given a measurement record) to obtain the 

normalized consistent random set included in the following table: 

Table 3.1e 

Random Interval Weight 
[1, 3) 0.4 
[2, 3) 0.2 

[2.5, 4) 0.4 
 

The software goes on to obtain the plausibility trace values for the above set and sends 

these values to a user designated data file for plotting the plausibility trace (possibility 

histogram for consistent sets).  The core of this random set is [3, 3.5).  

 

 

3.3.3 Consonant Transformation 

   

The following example was presented in Chapter 2, and is repeated here however Option 

2 is used.  

Example 3.2 

The observation record (required for use in the software) is found in the 1st column and 

the determined weights are found in the 2nd column: 
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Table 3.2a 

Interval Weight 
[20, 28) 0.2 
[24, 28) 0.2 
[28, 30) 0.2 
[22, 28) 0.2 
[21, 29) 0.2 

 

 

The above intervals are arbitrarily subdivided into two sets, one composed of a consonant 

set and the other a non-consonant set.  Included in the consonant set is an interval that 

includes all the original intervals.  In this particular example there are 2 options for 

normalizing the non-consonant set, however we continue with Option 2 (see Chapter 2, 

Section 2.5.2 for Option 1). 

 

Table 3.2b 

Option 1 Option 2 
Hi Ij Hi Ij

[20, 30) [20, 28) [20, 30) [20, 28) 
[21, 29) [28, 30) [20, 28) [21, 29) 
[22, 28)  [22, 28)  
[24, 28)  [24, 28)  

 

Since there were only five unique intervals in the original data, then the total weight for 

each arbitrary interval is 1/5 or 0.2.  Each interval occurs only once in the collection of 

six arbitrary divided intervals (G-set) thus, each has a normalized weight of 1/6.  

 46



 

Table 3.2c 

G – Sets  Interval Total Weight Normalized Weight 

[20, 30) 0.2 1/6 
[20, 28) 0.2 1/6 
[22, 28) 0.2 1/6 

QH = 4 

[24, 28) 0.2 1/6 
[21, 29) 0.2 1/6 QI = 2 
[28, 30) 0.2 1/6 

 

There are 4 consonant intervals (Hi), i =1, 2, 3, 4 and 2 non-consonant intervals (Ij), j =1, 

2.  See table 3.2e. 

    

Table 3.2d 

Hi Ij
[20, 30) [21, 29) 

[20, 28) 

[22, 28) 

[24, 28) 

[28, 30) 

 

β values are now calculated.  

(1) 800.0
10
8

|)30,20[|
|)29,21[)30,20[|

11 ==
∩

=β  

(2)  200.0
10
2

|)30,20[|
|)30,28[)30,20[|

12 ==
∩

=β  

(3)  875.0
8
7

|)28,20[|
|)29,21[)28,20[|

21 ==
∩

=β  

(4)  0
8
0

|)28,20[|
|)30,28[)28,20[|

22 ==
∩

=β  
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(5)  000.1
6
6

|)28,22[|
|)29,21[)28,22[|

31 ==
∩

=β  

(6)  0
6
0

|)28,22[|
|)30,28[)28,22[|

32 ==
∩

=β  

(7)  000.1
4
4

|)28,24[|
|)29,21[)28,24[|

41 ==
∩

=β  

(8)  0
4
0

|)28,24[|
|)30,28[)28,24[|

42 ==
∩

=β  

From the β values the redistribution factors (k) are calculated. 

(9)  218.0k
41312111

11
11 =

β+β+β+β
β

=  

(10)  1k
42322212

12
12 =

β+β+β+β
β

=  

(11)  238.0k
41312111

21
21 =

β+β+β+β
β

=  

(12)  0k
42322212

22
22 =

β+β+β+β
β

=  

(13)  272.0k
41312111

31
31 =

β+β+β+β
β

=  

(14)  0k
42322212

32
32 =

β+β+β+β
β

=  

(15)  272.0k
41312111

41
41 =

β+β+β+β
β

=  

(16)  0k
42322212

42
42 =

β+β+β+β
β

=  

 

The final weight for each Hi is now calculated using the formula below.   
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(17)  ∑
=

η+η=
iQ

1j
jijii )I(*k)H()H(m

Ai Hi

A1 [20, 30) 370.0
6
218.2167.0*)1218.0(167.0m ==++=  

A2 [20, 28) 206.0
6
238.1167.0*)238.0(167.0m ==+=  

A3 [22, 28) 212.0
6
272.1167.0*)0272.0(167.0m ==++=  

A4 [24, 28) 212.0
6
272.1167.0*)0272.0(167.0m ==++=  

        ∑= 00.1  

Using the following equation the plausibility trace values (ρ ) are determined. 

(18)   ( )∑
=

=ρ
k

1i
ik Hm)A(

(19)  370.0)A( 1 =ρ  

(20) 576.0)A( 2 =ρ  

(21)  788.0)A( 3 =ρ

(22) 00.1)A( 4 =ρ  

Recall, that the plausibility trace becomes a possibility distribution when Α is consistent.  

This example is repeated in Chapter 5 where the results of Options 1 and 2 are compared 

using Hamming distance, and Similarity.    
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3.3.4 Encounter with a Consonant Interval Set 

 

The following examples are already consonant and do not need to be transformed.  Their 

possibility histograms and thus possibility distributions are trivially obtained.  The 

software recognizes this and only determines the possibility distribution.  

 

Example 3.3 

Given the following nested measurement record (columns 1 and 2), the 

resulting possibility distribution values are readily determined by the 

software (column 3). 

Table 3.3a 

Interval Weight Possibility Dist. Value 

[5, 13) 1/3 1/3 

[7, 13) 1/3 2/3 

[9, 12) 1/3 1 

In this trivial example, the interval set that comprises the core has the 

highest value in the possibility distribution, followed by the interval set 

that includes that interval and finally the least possible is the interval set 

that makes up the support.    

 

Example 3.4 

Given the observation record (columns 1 and 2), the possibility values are 

readily determined by the software (column 3).  
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Table 3.3b 

Interval Weight Possibility Values 

[36, 48) 1/4 1 
[36, 48) 1/4 1 
[36, 48) 1/4 1 
[36, 48) 1/4 1 

 

Notice that all the intervals are identical and thus all have the same 

possibility value. 

  

 

3.4 Chapter Summary 

 

All possibility histograms are fuzzy intervals and are described as possibility distributions 

from consistent empirical random sets [7]; they are derived from overlapping interval 

observations and are governed by the mathematics of random sets.  Software has been 

developed using C++ to obtain plausibility trace values for various random interval sets.  

The use of software allows this study to take place more efficiently.  The software sends 

these determined values to a data file, and using this data file the plausibility trace values 

are plotted to form possibility histograms.  See the appendix for software.  The 

methodology and utility of the transformation algorithms is demonstrated in this chapter 

through some illustrative examples.    
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Chapter 4 

 

Analytical Method 

 

 

 

4.1 Chapter Introduction 

 

This chapter describes the metrics used in studying the transformed sets.  The similarity 

and Hamming distance metrics are used to determine the closeness of the transformed set 

to the original set. The minimization and maximization of the Hamming distance and 

similarity, respectively, is our desired goal in the development of automated methods to 

select possibility distributions from a collection of random intervals. It is expected that 

the conflict among evidence (Strife) will be reduced through transformation but it is not 

clear how the nonspecificity among evidence will change.  For example, there is less 

Strife in a consonant interval set than a non-consonant interval set thus the Strife should 

decrease through consonant transformation. The uncertainty measures used in this 

investigation are repeated in this chapter for clarity.  
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4.2 “Closeness” 

 

The similarity and Hamming distance metrics are used to determine the “closeness” of 

the transformed set to the original set. The minimization and maximization of Hamming 

distance and similarity, respectively is desired in this investigation. 

 

 

4.2.1 Hamming Distance Metric 

Recall from Chapter 2, that we are dealing with a discrete set and not a continuous set. 

Therefore, the transformed set and the original set posses the same discrete 

observation values.  The Hamming distance is readily calculated based on the following 

equation. 

)B~( )A~(

)A(f ∑
∈

ρ−ρ=
Xx

BA )x()x(
~~

.       (4.2.1) 

Demonstrating this for only the single discrete value 25, the distance for this single point 

is 

)25(f = )25()25( B~A~ ρ−ρ . 

At this discrete value, the original untransformed set has a plausibility trace value of 0.5 

and in the transformed set the value is 0.6, the distance is thus equal to 0.1 for this single 

point.   

)25(f )6.0()5.0( −= = 0.1 

This process is continued for all the discrete values defined over the support and summed 

to determine the overall Hamming Distance.   
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4.2.2 Similarity Metric 

 
To determine the similarity value between an original untransformed set and a 

transformed set composed of three points 25, 26, and 27.  The original set contains 

plausibility trace values of 0.5, 0.7, and 0.9 at 25, 26, and 27 respectively.  The 

transformed set contains plausibility trace values of 0.6, 0.8, and 1.0 at 25, 26, and 27 

respectively.  To calculate the inner product, we first determine the minimum plausibility 

trace value at each point, next we determine the maximum of the resulting values.  This is 

done using the following equation. 

))).x(),x((min(maxBA iB~iA~
n

1i

T

~~
ρρ=•

=
       (4.2.2) 

9.0))0.1,9.0min(),8.0,7.0min(),6.0,5.0max(min(BA T

~~
==•  

For the outer product, we utilize Equation 4.3 and determine the maximum of the 

complement of the plausibility values at points 25, 26, and 27, next we determine the 

minimum of the resulting values.   

))).x(),x((max(minBA iB~iA~

n

1i

T

~~
ρρ=⊕

=
      (4.2.3) 

1.0))0,1.0max(),2.0,3.0max(),4.0,5.0min(max(BA T

~~
==⊕  

The outer product is thus equal to 0.1.  Thus the similarity value is equal to the average of 

the inner and outer product. 

[ )BA()BA(
2
1)B,A( T

~~~~2~~
⊕+•= ]       (4.2.4) 

[ ] 5.01.09.0
2
1)B,A( 2~~

=+=  
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4.3 Conflict 

 

As mentioned in Chapter 2, several measures for conflict among evidence have been 

proposed.  Recall, that conflict is the disagreement among the random intervals of the 

random set.  For this study, the most valuable measure of conflict among evidence is 

found using the equation for Strife (ST), which is defined by the formula below. 

∑ ∑
∈ ∈

∩
−=

R1 R2SA SA 1

21
21 |A|

|AA|)B(mlog)A(m)m(ST     (4.3.1) 

where, A1 and A2 are focal sets of Α and m )(⋅ is a measure of the weight.   The above 

formula requires that the number of focal elements in A1 and A2 be known, that we have 

a discrete interval set.  This allows the cardinality of a set, say |A1|, to be determined.  In 

Chapter 2, it was stated that discrete rather than continuous sets are used and that the 

granularity of these discrete sets is 1.  Strife properly scales each particular conflict of 

m(B) with respect to m(A) according to the degree of violation of the subsethood relation 

[6].        AB ⊆

 

4.3.1 Strife  

 

Consider the Example 3.3 of Chapter 3, Strife (ST) is calculated using Equation 4.3.1. 

+⎥
⎦

⎤
⎢
⎣

⎡ ∩
+

∩
⎟
⎠
⎞

⎜
⎝
⎛−=

|)13,5[|
|)12,9[)13,5[|*

3
1

|)13,5[|
|)13,7[)13,5[|*

3
1log*

3
1)m(ST 2  

    +⎥
⎦

⎤
⎢
⎣

⎡ ∩
+

∩
⎟
⎠
⎞

⎜
⎝
⎛−

|)13,7[|
|)12,9[)13,7[|*

3
1

|)13,7[|
|)13,5[)13,7[|*

3
1log*

3
1

2  
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    ⎥
⎦

⎤
⎢
⎣

⎡ ∩
+

∩
⎟
⎠
⎞

⎜
⎝
⎛−

|)12,9[|
|)13,7[)12,9[|*

3
1
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This value is useful in comparing sets of evidence, the lower the value of Strife the less 

the conflict among the evidence of the set.   

 

4.4 Nonspecificity 

 

As stated in Chapter 2, nonspecificity is related to sizes of the relevant sets of alternatives 

and for evidence theory Nonspecificity (N) is reasonable measure of uncertainty [6].  For 

a discrete set, the value of N will be larger for sets with more members of elements.  Thus 

making the random set less specific.   Either the function for U-uncertainty (U) or 

Nonspecificity (N) may be applied in this investigation. Recall, U is applicable in fuzzy 

set  theory and possibility theory, N is applicable in evidence theory, and Hartley function 

is applicable to probability theory [6].   For nested bodies of evidence, U is a special case 

of N [6], and is equal to N, otherwise .NU ≠   A normal possibility histogram is 

determined for each transformed set of interval data, be it consonant or only consistent.  

U can be calculated for each of these resulting histograms (fuzzy intervals ) using the 

Equation 4.4.1; however, the value obtained may differ from that of N.  

F

U(F) ∫ π=
1

0 2 ||log F πd                            (4.4.1) 
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where indicates the degree of possibility focusing on  and indicates a fuzzy 

interval. 

πd || Fπ F

 

While U is obtained from the resulting possibility distribution, N is determined using the 

weight m(Ai), of each focal element Ai of Α and the cardinality of Ai.   

∑
∈

=
Ri SA

i2i |A|log)A(m)m(N         (4.4.2) 

The larger the value of Ai, the less specific the evidence; and the larger the m(Ai), the 

stronger the evidence [6].   

 

4.4.1 Function U-uncertainty (U) 

 

Again considering the Example 3.3 and figure 3.3a of Chapter 3, U-uncertainty is 

calculated using Eq. 4.4.1 as follows (in units of bits).  

U(Α) ∫= 3
1

0 2 |8|log πd ∫+ 3
2

3
1 2 |6|log πd  ∫+

1

3
2 2 |3|log 389.2d =π  

 

4.4.2 Function Nonspecificity (N)  

 

Continuing with Example 3.3 Chapter 3, Nonspecificity (N) is calculated using Equation 

4.4.2 as follows.  

39.2)912(log3
1)713(log3

1)513(log3
1)m(N 222 =−+−+−= bits 

Notice that the evidence of Example 3.3 is nested thus U = N.   
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4.5 Aggregate Uncertainty 

 

A metric has been proposed that is supposed to capture, in an aggregate fashion, both the 

nonspecificity and the conflict in a given body evidence (expressed in terms of evidence 

theory); this metric is known as aggregate uncertainty (AU) and can be expressed using 

belief measures, plausibility measures, or basic probability assignments [6].  Two 

proposed algorithms were presented in Chapter 2 for calculating AU,  (1) using belief 

measures or (2) using the possibility measures from a nested set of interval data.  

Both 1 and 2 are used in this investigation and are illustrated in sections 4.5.1 and 4.5.2. 

  

 

4.5.1 Aggregate Uncertainty Using Possibility Measures 

 

Again, continuing with Example 3.3 and the Algorithm 2.6.1 for AU introduced in 

Chapter 2, for nested evidence and using the possibility distribution values for the 

elements of the discrete interval sets )( iπ , AU is determined as follows. 

 
Table 4.5a 

Element Possibility 
1x = 9 1 

2x = 10 1 
3x = 11 1 
4x = 7 2/3 
5x = 8 2/3 

6x = 12 2/3 
7x = 5 1/3 
8x = 6 1/3 
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Step 1. Let j = 1 and ,01n =π + where n = 8 

 Step 2. Find the maximum }{ n,,1j,ji K+∈  such that 
j1i
1ij

−+

π−π +  is maximal. 

  0
1

11
111
21 =

−
=

−+
π−π  

1112.0
3

6666.1
113
41 =

−
=

−+
π−π

 

1112.0
6

3333.1
116
61 =

−
=

−+
π−π

 

125.0
8

01
118
91 =

−
=

−+
π−π

*Maximal  

Step 3. For k{1,2,3,…8} put pk= 125.0
8

01
118
91 =

−
=

−+
π−π

 

Step 4. j = 8 + 1 

Step 5. Since i > n, go to Step 6.  

Step 6. =−=Π )125.0(log125.0*8)(AU 2 3 bits 

The Aggregate Uncertainty is 3 bits for Example 3.3.  This value is combines the 

uncertainty in evidence due to Strife and Nonspecificity in an aggregate manner and is 

used to compare the uncertainty in transformed sets.  
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4.5.2 Aggregate Uncertainty Using Belief Measures 

 

Continuing with Example 3.3 and Algorithm 2.6.2 for AU introduced in Chapter 2 using 

the belief measures, AU is determined as follows, X = {5,6,7,…,12} 

Table 4.5b 

A Bel(A) 
|A|

)A(Bel  
{9,10,11} 1/3 0.1112 

{7,8,9,10,11,12} 2/3 0.1112 
{5,6,7,8,9,10,11,12} 1 0.125* 

 

 Step 1. * is Maximal 

 Step 2. For put ,Ax ∈ 125.0px =  

 Step 3. For each [ ],AXB −⊆ put )A(Bel)AB(Bel)B(Bel −∪= . 

 Since , skip to Step 7. 0AX =−

 Step 7. =−=Π )125.0(log125.0*8)(AU 2 3 bits 

The set in the above examples was consonant (i.e. nested), thus the AU obtained through 

Algorithm 2.6.1 and 2.6.2 are equivalent.  Algorithm 2.6.1 and 2.6.2 are both applicable 

to consonant interval sets however, only Algorithm 2.6.2 is applicable to consistent but 

non-consonant interval sets.   
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4.6 Chapter Summary 

 

Conflict in evidence among a collection of random intervals is measured through the use 

of a function called Strife(ST).  Likewise, the nonspecificity is measured through the use 

of the function called Nonspecificity (N).  Both conflict and nonspecificity in evidence 

are captured by the Aggregate Uncertainty (AU).  For fuzzy sets, the function U can be 

utilized to calculate the nonspecificity.  The use of the possibility distribution for the 

determination of AU is only applicable to discrete consonant interval sets whereas, the 

use of belief is applicable to all types of discrete interval sets.  For nested set of evidence 

U is a special case of N, where N = U.          

 

 

 

 

 

 

 

 

 

 

 

 

 

 61



Chapter 5 
 

Comparison of Transformed Sets 

 

5.1 Chapter Introduction 

 

In transforming an inconsistent random set to a consistent set, there exists an array of 

possible transformed consistent sets depending on the normalizing interval chosen.  The 

same is true for the transformation of non-consonant random sets.  This array of possible 

transformed sets is a consequence of various normalizing intervals available for 

consistent transformation and the various collections of consonant intervals available for 

consonant transformation.  The transformed sets included in this array differ from one 

another; this is apparent, not only in the resulting possibility histogram of each 

transformed set, but in the conflict and nonspecificity measures of each transformed set.  

The resulting possibility histograms, Nonspecificity, Strife, and Aggregate Uncertainty 

can all be used to reveal the effects of certain characteristics of the normalizing interval 

or intervals on consistent and consonant transformations, respectively.   Similarity and 

Hamming distance values are calculated to determine the “likeness” of the transformed 

set to that of the original set.  Recall, these metrics are based on the plausibility trace of 

the untransformed sets and the transformed sets.  The Hamming distance, Similarity, 

Strife, Nonspecificity and Aggregate Uncertainty values for the array of transformed sets 

are displayed in the last table for each transformation example of this chapter. 
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5.2 Examples 

 

This section introduces 7 interval set examples transformable using consonant 

transformation (Donald algorithm) or consistent transformation (Joslyn algorithm). The 

examples consist of non-consistent sets to consistent but non-consonant sets. 

 

Example I 

This example was introduced in Chapter 3 as Example 3.2.  It is a non-consistent but 

overlapping interval set (see Figure 5.1), the observational interval set is repeated here.  

Due to the nature of the observation set, overlapping, it may be transformed using either 

the transformation algorithm proposed by Jolsyn [8, 9] or Donald [4].   Only consonant 

transformation proposed by Donald [4] is pursued here (see Section 5.3) 

Table 5.1 

Interval Weight 
[20, 28) 0.2 
[24, 28) 0.2 
[28, 30) 0.2 
[22, 28) 0.2 
[21, 29) 0.2 

 

Figure 5.1 

18 23 28

Observation Values
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Example II  

This example is also a non-consistent but overlapping interval set, again both 

transformations algorithms are applicable.  Both transformations are demonstrated in this 

chapter.   

Table 5.2  

Observational Interval Weight 
[20, 25) 1/3 
[23, 28) 1/3 
[27, 30) 1/3 

 

Figure 5.2 

18 23 28

Observation Values
 

 

Example III 

This is another example of an overlapping set however, it is important to note that 

interval [18, 20) occurs twice in this interval set. 

 Table 5.3 

Observational Interval Weight 
[16, 23) 1/5 
[18, 20) 1/5 
[18, 20) 1/5 
[22, 26) 1/5 
[24, 26) 1/5 
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Figure 5.3 

14 18 22 26

ObservationaValues
 

 

Example IV 

This is a consistent but non-consistent interval set, with its core equal to one width. It is 

important to note that only consonant transformation is applicable here, already 

consistent. 

Table 5.4 

Observational Interval Weight 
[91, 102) 1/3 
[101, 106) 1/3 
[95, 104) 1/3 

 

 

Figure 5.4 

88 92 96 100 104 108

Observation Values
 

 

Example V 

The interval set here is non-consonant but consistent, again note that it may be 

transformed to a consonant set only (being that it is already consistent). 
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Table 5.5 

Observational Interval Weight 
[39, 45) 1/4 
[41, 47) 1/4 
[37, 42) 1/4 
[40, 42)   1/4 

 

Figure 5.5 

36 40 44 48
Observation Values

 
 

Example VI 

The following interval set is non-consistent but overlapping. An important characteristic 

is that this interval set contains a super-interval that is equivalent to the support and 

includes both sub-intervals. 

 Table 5.6 

Observational Interval Weight 
[98, 107) 1/3 
[99, 102) 1/3 
[102, 106) 1/3 
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Figure 5.6 

96 100 104 108

Observation Values
 

 

Example VII 

This interval set here is a disjoint interval set, no evidence is available over a certain 

portion of the support.  It is may transformed consistent (Jolsyn algorithm) or consonant 

(Donald algorithm), however it only transformed to a consistent interval set in this 

chapter (see Section 5.4). 

 Table 5.7 

Observational Interval Weight 
[10, 16) 1/3 
[15, 19) 1/3 
[20, 22) 1/3 

 

Figure 5.7 

8 12 16 20 2

Observation Values
4
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5.3 Consonant Transformation 

 

In consonant transformation, a non-consonant interval set is transformed to a consonant 

interval set.   Recall that for consonant interval sets U becomes N, thus U is not included 

in the following tables.  In the following examples, the algorithm proposed by Donald & 

Ross [4] is used to transform the non-consonant set to a consonant set.  As mentioned in 

Chapter 1, various transformed consonant interval sets may result from a non-consonant 

interval set; this is due to the various collections of selected normalizing intervals from 

the focal set in transforming the non-consonant set.  Each collection of normalizing 

intervals produces a fairly different transformed set.  Each resulting transformed interval 

set is denoted as simply an Option.  In Example 5.1, two transformed consonant interval 

options are considered.  For each transformed option, the Hamming distance, Similarity, 

Strife, Nonspecificity, and Aggregate Uncertainty are calculated. This allows the 

comparison between the transformed sets.  The Hamming distance and Similarity metrics 

use the plausibility trace ρ of both the original set and the transformed set in calculating 

their resulting values.  Recall that the plausibility trace is a mapping of the plausibility of 

the singleton elements, x of the random set Α to the unit interval. 

 

Example 5.1 (refer to Example I above) 

Let’s begin with the non-consistent Example I of Section 5.2 above, the resulting 

possibility distribution for two options (Option 1A and Option 1B) are illustrated in 

Figures 5.1a and 5.1b.  Included in these figures are the plausibility trace for the original 

interval set.  Strife (ST), Nonspecificity (N), and Aggregate Uncertainty (AU) for both 
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Option 1A and 1B are shown in Table 5.1a.  Also shown in Table 5.1a are the Similarity 

and Hamming distance metrics.   

Figure 5.1a 
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Figure 5.1b 
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Table 5.1a 

 Nonspecificity Strife Aggregate Similarity Distance 
Option 1A 2.798 0.767 3.322 0.747 1.739 
Option 1B 2.819 0.830 3.322 0.715 2.128 

 

Option 1A has a higher Similarity as well as lower Hamming distance value, hence it is 

more like that of the original set.  The normalizing intervals of Option 1A and Option 1B 

are very similar, they differ in only one interval [20, 28) and [21, 29) (see Example 3.2 of 

Chapter 3).  These two intervals are included by the same number of super-intervals and 

have the same plausibility; however, the number of elements in common with the rest of 
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the focal set is what sets them apart.  The interval [21, 29), of Option 1A, has more points 

in common with the focal set than does interval [20, 28).   

   

Example 5.2 (refer to Example II above)  

 

The following intervals of Table 5.2a are formed from the intersections of the above 

intervals and form the focal set (see Section 2.5.1 of Chapter 2).  Notice that the min-max 

interval (equivalent to the support) has been included in the focal set, this is from the 

union of all sets and is included in the focal set if it has not been accounted for in the 

original set.  The determination of the original weight and the normalized weight is 

explained in Chapter 2 and is not repeated here.   

Table 5.2a 

Focal Set Original Weight Normalized Weight 
[20, 30) 1/3 1/6 
[20, 25) 1/3 1/6 
[23, 25) 1/3 1/6 
[27, 28) 1/3 1/6 
[23, 28) 1/3 1/6 
[27, 30) 1/3 1/6 

   

There are four apparent options (2A, 2B, 2C, 2D), for transforming the above non-

consonant set to a consonant set.  Note that the support is included in each of the Options. 

Table 5.2b 

Option 2A Option 2B Option 2C Option 2D 
H I H I H I H I 

[20, 30) [23, 28) [20, 30) [20, 25) [20, 30) [20, 25) [20, 30) [20,25) 
[20, 25) [27, 30) [23, 28) [23, 25) [27, 30) [23, 25) [23, 28) [27,28) 
[23, 25) [27, 28) [27, 28) [27, 30) [27, 28) [23, 28) [23, 25) [27,30) 
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The resulting plausibility trace of Options 2A, 2B, 2C and 2D are given in Figures 5.2a, 

5.2b, 5.2c and 5.2d, respectively. 

 
Figure 5.2a 
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Figure 5.2b 
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Figure 5.2c 
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Figure 5.2d 
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Table 5.2c 

 N ST AU Similarity Distance 
Option 2A 2.529 1.714 3.309 0.561 3.0263 
Option 2B 2.025 1.392 3.130 0.659 1.29629 
Option 2C 2.124 2.183 3.170 0.561 2.4545 
Option 2D 2.352 1.276 3.269 0.650 1.7339 

 

As stated above, the support is included in each of the Options; however, the selection of 

the following intervals which result in a transformed set that is most like that of the 

original set is desired.  Each of these non-minimal intervals is included by an equivalent 

amount of super-intervals (the support), however they differ in their plausibility as well 

as the number of elements in common.   The minimal intervals differ in size but have an 

equivalent plausibility.  In this example, Option 2B produces the transformed set that is 

most like that of the original set (as determined from Similarity and Hamming distance).  

The minimal interval of Option 2B is the smallest.  The non-minimal interval [23, 28) has 

the highest plausibility and the most points in common with the rest of the focal set. 

 

 

 

 72



Example 5.3 (refer to Example III above) 

Consider yet another non-consonant and inconsistent but overlapping observation record 

as shown in Table 5.3.  Here there are two apparent alternatives for consonant 

transformation without determining any additional intervals as was done in Example 5.1.  

However, if the approach taken in Example 5.2 is taken here there will be 2 additional 

alternatives.  Table 5.3a includes the intervals formed from the intersection of the above 

intervals.  The original weight is based on the minimum norm and the assumption that the 

underlying evidence is coherent (see Section 2.5.1 of Chapter 2).  The resulting 4 

consonant alternatives are shown Table 5.3b and in Figures 5.3a, 5.3b, 5.3c, and 5.3d.   

 

Table 5.3a 

Focal Set Original Weight Normalized Weight 
[16, 26) 1/5 1/7 
[16, 23) 1/5 1/7 
[18, 20) 2/5 2/7 
[22, 23) 1/5 1/7 
[22, 26) 1/5 1/7 
[24, 26) 1/5 1/7 

 

Table 5.3b 

Option 3A Option 3B Option 3C Option 3D 
H I H I H I H I 

[16, 26) [22, 23) [16, 26) [18, 20) [16, 26) [16, 23) [16, 26) [16, 23) 
[16, 23) [22, 26) [16, 23) [18, 20) [22, 26) [18, 20) [22, 26) [18, 20) 
[18, 20) [24, 26) [22, 23) [22, 26) [22, 23) [18, 20) [24, 26) [18, 20) 
[18, 20)   [24, 26]  [24, 26)   
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Figure 5.3a 
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Figure 5.3b 
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Figure 5.3c 
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Figure 5.3d 
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Table 5.3c 

 N ST AU Similarity Distance 
Option 3A 2.781 1.203 3.322 0.575 4.235 
Option 3B 2.373 1.320 3.211 0.580 3.508 
Option 3C 2.256 1.837 3.238 0.500 3.393 
Option 3D 2.616 1.831 3.309 0.500 3.721 

 

Again in this example, non-minimal intervals with the maximum plausibility result in a 

transformed set that is most like that of the original set, according to Similarity and 

Hamming distance values.  Option 3A and Option 3B both contain intervals [16, 26) and 

[16, 23), however they differ in the following interval (i.e. [18, 20) and [22, 23), 

respectively).  In this case, both interval [22, 23) and interval [18, 20) are minimal but 

[22, 23) is smaller; however, they [18, 20) has a higher plausibility trace.  Option 3B is 

most like the original set; this is demonstrated by a maximal value of Similarity and 

minimal value of Hamming Distance. 
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From the results, it seems that selecting the non-minimal interval over the minimal 

interval will result in a transformed set that is most like that of the original interval set.  

 

 

Example 5.4 (refer to Example IV above) 

Following the same procedure as was done above in Example 5.2, the following intervals 

and weight are obtained.  

Table 5.4a 

Focal Set Original Weight Normalized Weight 
[91, 106) 1/3 1/7 
[91, 102) 1/3 1/7 
[101, 102) 1/3 1/7 
[101, 106) 1/3 1/7 
[101, 104) 1/3 1/7 
[95, 102) 1/3 1/7 
[95, 104) 1/3 1/7 

 

Here there are three options for transforming the above non-consonant set to a consonant 

set. 

Table 5.4b 

Option 4A Option 4B Option 4C 
H I H I H I 

[91, 106) [101, 106) [91, 106) [91, 102) [91, 106) [91, 102) 
[91, 102) [101, 104) [101, 106) [95, 102) [95, 104) [101, 106) 
[95, 102) [95, 104) [101, 104) [95, 104) [95, 102) [101, 104) 
[101, 102)  [101, 102)  [101, 102)  

 

Option 4D 
H I 

[91, 106) [91, 102) 
[95, 104) [95, 102) 
[101, 104) [101, 106) 
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[101, 102)  
 

The resulting possibility distribution for Options 4A, 4B, 4C and 4D are shown in Figures 

5.4a, 5.4b, 5.4c, and 5.4d respectively.  

 
 

Figure 5.4a 
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Figure 5.4b 
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Figure 5.4c 
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Figure 5.4d 
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Table 5.4c 

 N ST AU Similarity Distance 
Option 4A 2.111 1.292 3.325 0.796 1.687 
Option 4B 1.798 1.328 3.116 0.833 3.089 
Option 4C 2.152 1.138 3.397 0.833 1.026 
Option 4D 2.010 1.230 3.397 0.651 2.034 

 

Here all the Options have the same minimal interval in common ([101, 102)); therefore, 

the difference is among the non-minimal intervals.  Each of the intervals in Table 5.4a 

have an equivalent plausibility, however they differ in points in common with the rest of 

the focal set.  Based on maximal Similarity and minimal Hamming distance, Option 4C is 

most like that of the original set.  Interval [95, 104) has more points in common with the 

rest of the focal set than does intervals [91, 102) and [101, 106).  Also, interval [95, 102) 

has more points in common than interval [101, 104). 
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Example 5.5 

It is important to note that this is a consistent but non-consonant interval set.  The non-

consonant set can be transformed consonant by the following options.   

Table 5.5a 

Option 5A Option 5B Option 5C 
Hi Ij Hi Ij Hj Ij

[37, 47) [41, 47) [37, 47) [39, 45) [37, 47 ) [39, 45) 
[39, 45) [37, 42) [37, 42) [41, 47) [41, 47) [37, 42) 
[40, 42)  [40, 42)   [40, 42) 

 

Which results in the following transformed sets. 

 

Figure 5.5a 
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Figure 5.5b 
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Figure 5.5c 
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However, the original observation record can be further broken down as was done in 

Example 5.2 resulting in the following intervals and weight are obtained.  

Table 5.5b 

Focal Set Original Weight Normalized Weight 
[37, 47) 1/4 1/8 
[39, 45) 1/4 1/8 
[41, 45) 1/4 1/8 
[39, 42) 1/4 1/8 
[40, 42) 1/4 1/8 
[41, 47) 1/4 1/8 
[41, 42) 1/4 1/8 
[37, 42) 1/4 1/8 

 

From which there are 4 available alternatives for transforming the non-consonant set to a 

consonant set.  
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Figure 5.5d 
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Figure 5.5e 
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Figure 5.5f 
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Figure 5.5g 
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Table 5.5c 

 N ST AU Similarity Distance 
Option 5A 2.254 1.222 3.227 0.841 1.095 
Option 5B 2.182 1.300 3.202 0.826 1.800 
Option 5C 2.993 1.433 3.322 0.723 3.715 
Option 5D 1.711 1.119 2.964 0.875 0.988 
Option 5E 1.602 0.997 2.985 0.875 0.709 
Option 5F 1.640 1.160 2.910 0.875 1.434 
Option 5G 1.517 1.010 2.782 0.820245 1.295 

 

 

Example 5.6 

Given the non-consonant observation record of Table 5.6, there are only two available 

options for transforming it to a consonant set.  Note that the interval set is non-consistent 

and non-consonant but one super-interval includes the other two sub-intervals.  The 

possibility distributions for options 6A and 6B are shown in Figures 5.6a and 5.6b, 

respectively. 

Table 5.6a 

Option 6A Option 6B 
Hi Ij Hi Ij

[98, 107) [102, 106) [98, 107) [99, 102) 
[99, 102)  [102, 106)  
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Figure 5.6a 
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Figure 5.6b 
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Table 5.6b 

 N ST AU Similarity Distance 
Option 6A 2.642 2.308 3.170 0.500 1 
Option 6B 2.780 2.032 3.170 0.500 1.333 

 

Both options are comprised of only two intervals, the super-interval being equivalent.  

The minimal intervals have an equivalent plausibility but are differ in size.  Again, the 

option that uses the minimal interval with minimal size and maximal plausibility is most 

like the original set, based on maximal Similarity and minimal Hamming distance.  
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5.4 Consistent Transformation  

 

In the following examples asterisk denotes a transformed consonant set and includes the 

measures N but not U.  For transformed consistent but non-consonant random sets both U 

and N are included. 

  

Example 5.7 

Given the following inconsistent and disjoint observation record of Table 5.7 of Example 

VII (Section 5.2), it is transformed consistent using Joslyn’s Algorithm.  The normalizing 

intervals are limited to those that form the finest partition of the support = {GΓ k}, (see 

Section 2.5.2) of which there are 5 and thus 5 alternative transformed consistent sets.  

Table 5.7a illustrates the available normalizing intervals.  The plausibility trace for the 

resulting transformed sets for Options 7A, 7B, 7C, 7D and 7E are shown in Figures 5.7a, 

b, c, d,and e, respectively. 

Table 5.7a 

Option Gk Plausibility Trace 
7A [10, 15) 1/3 
7B [15, 16) 2/3 
7C [16, 19) 1/3 
7D [19, 20) 0 
7E [20, 22) 1/3 
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Figure 5.7a 
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Figure 5.7b 
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Figure 5.7c 
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Figure 5.7d 
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Figure 5.7e 
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Table 5.7b 

 N U ST AU Similarity Distance 
Option 7A* 3.113 3.113 0.8987 3.585 2/6 4.667 
Option 7B 2.464 1.8616 2.168 3.563 2/6 1.667 
Option 7C 2.585 2.195 1.437 3.585 2/6 2.000 
Option 7D 2.410 1.969 1.938 3.560 2/6 2.000 
Option 7E* 2.528 2.528 1.269 3.466 2/6 3.000 

 

Notice that the consonant sets Options 7A and 7E are the farthest from the original set; 

also, that equivalent values for Similarity are produced.  Here selecting the smallest 

normalizing interval with the highest plausibility results in the transformed set most like 

that of the original set.  Based on minimal Hamming Distance, this set that is most like 

that of the original is Option 7B. 
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Example 5.8 

Now consider consistent transformation of the non-consistent but overlapping set of 

Example II in Section 5.2.  By limiting the normalizing intervals to those that form the 

finest partition of the support, we have 5 normalizing intervals and thus 5 transformed 

consistent alternatives.  Table 5.8a illustrates the normalizing intervals used in 

transforming the original set.  The possibility distribution for each Option A, B, C, D, and 

E are in Figures 5.8a, b, c, d, e, respectively.  

Table 5.8a 

Option Gk Plausibility Trace 

8A [20, 23) 1/3 
8B [23, 25) 2/3 
8C [25, 28) 1/3 
8D [27, 28) 2/3 
8E [28, 30) 1/3 

 

Figure 5.8a 
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Figure 5.8b 
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Figure 5.8c 
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Figure 5.8d 
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Figure 5.8e 
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Table 5.8b 

 N U ST AU Similarity Distance 
Option 8A* 2.881 2.881 0.892 3.322 2/3 3.334 
Option 8B 2.484 2.215 1.530 3.322 2/3 1.334 
Option 8C 2.484 2.215 1.497 3.322 2/3 1.334 
Option 8D 2.302 1.881 1.831 3.319 2/3 1.000 
Option 8E* 2.571 2.571 1.080 3.258 2/3 2.334 

 

Again, selecting the smallest normalizing interval with the highest plausibility results in 

the lowest Hamming distance, which is the transformed consistent set that is most like 

that of the original set.  

 

Example 5.9  

Returning to Example III above (see Section 5.2), consisting of an inconsistent but 

overlapping observation interval.  Again, note that the observation [18, 20) occurs twice 

in the observation interval.  By limiting the normalizing intervals to those that form the 

finest partition of the support, there are 6 normalizing intervals (Table 5.9a) and thus 6 

transformed consistent alternatives.  The possibility distribution for each Option 9A, 9B, 

9C, 9D, 9E, and 9F are in Figures 5.9a, b, c, d, e and f respectively.    

Table 5.9a 

Option Gk Plausibility Trace 
9A [16, 18) 0.200 
9B [18, 20) 0.600 
9C [20, 22) 0.200 
9D [22, 23) 0.400 
9E [23, 24) 0.200 
9F [24, 26) 0.400 
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Figure 5.9a 
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Figure 5.9b 
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Figure 5.9c 
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Figure 5.9d 
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Figure 5.9e 
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Figure 5.9f 
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Table 5.9b 

 N U ST AU Similarity Distance 
Option 9A* 2.690 2.690 1.123 3.322 0.600 3.600 
Option 9B 2.129 2.161 1.420 3.171 0.700 2.000 
Option 9C 2.395 2.156 1.632 3.322 0.700 2.000 
Option 9D 2.290 1.729 2.138 3.322 0.700 1.600 
Option 9E 2.351 1.982 1.473 3.322 0.700 2.000 
Option 9F* 2.351 2.351 1.010 3.322 0.700 3.000 

 

Again, based on minimal Hamming distance, the normalizing interval with the smallest 

size and maximum plausibility results in the transformed consistent set that is most like 

that of the original set (Option 9D).  

 

Example 5.10 

Consistent transformation of Example VI of Section 5.2 results in 4 alternative sets, these 

are shown in Table 5.10b.  It is important to note that all the resulting transformed 

interval sets are consistent as well as consonant.  These are formed from the normalizing 

intervals shown in Table 5.10a.  The possibility distributions for these 4 alternatives are 

shown in Figures 5.10a, 5.10b, 5.10c, and 5.10d. 

Table 5.10a 

Option Gk Plausibility Trace 

10A [98, 99) 1/3 
10B [99, 102) 2/3 
10C [102, 106) 2/3 
10D [106, 107) 1/3 
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Figure 5.10a 
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Figure 5.10b 
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Figure 5.10c 

0

0.5

1

96 100 104 108
Observation Values

Pl
au

si
bi

lit
y 

Tr
ac

e

transformed plausibility trace

endpt

original plausibility trace

 
 

 

 

 

 93



Figure 5.10d 
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Table 5.10b 

 N U ST AU Similarity Distance
Option 10A* 2.723 2.723 0.918 3.170 5.333 1.667 
Option 10B* 2.521 2.521 1.029 3.170 5.333 1 
Option 10C* 2.659 2.659 0.938 3.170 5.333 1.333 
Option 10D* 2.831 2.831 0.841 3.170 5.333 1.667 

 

Based on Hamming distance, Option 10B is the transformed set that is most like the 

original set.  Option 10B uses the smallest interval with maximal plausibility to normalize 

the original set. 

 

5.5 Chapter Summary 

 

This Chapter provides a variety of originally inconsistent, inconsistent and disjoint, and 

consistent examples and their transformation using the appropriate transformation 

algorithm (either Ross & Donald or Joslyn).  This chapter also demonstrates the array of 

possible transformed sets that result for each untransformed set.  Variability exists among 

the alternatives of this array of transformed sets, this is apparent not only in the resulting 
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possibility distribution but also in the uncertainty measurements of the resulting 

transformed sets.  The differences between the original set and the transformed set can 

also be seen by comparing the plausibility trace of the original and transformed set shown 

in Appendix A. 

 

The point of the examples is to develop a correlation between the normalizing intervals 

and the transformed set.  The results of this chapter indicate that the size of the 

normalizing interval(s) plays an important role in obtaining a transformed set that is most 

like that of the original set.  This is especially demonstrated in consistent transformation 

using Joslyn’s [8, 9] transformation algorithm.  It is also demonstrated in the smallest 

sub-interval of the normalizing intervals used for consonant transformation with Ross & 

Donald [4] algorithm.  The results included in this chapter are essential to the automation 

of the transformation algorithms.  The uncertainty measurements of Strife, 

Nonspecificity, U-uncertainty, and Aggregate Uncertainty can be used to further study 

the transformation algorithms.  Their purpose in this chapter was to determine if there 

was a correlation between minimal uncertainty and the transformed set that was most like 

that of the original set; however, no correlation was determined.   
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Chapter 6 
 

Implications of the Normalizing Interval(s) Characteristics on the Transformed Sets 

 

6.1 Chapter Introduction 

 

Chapter 5 demonstrates the possible transformation alternatives for each untransformed 

set from a collection of random sets, as well as the variability among these alternatives.  

Recall, that this collection of transformed sets is a consequence of the various 

normalizing intervals available for consistent transformation and the various consonant 

interval options available for consonant transformation.  The transformed sets differ from 

one another; this is apparent, not only between resulting possibility histograms but the 

associated between conflict measures and nonspecificity measures as well.  Chapter 5 

also shows that whenever one uses a distance metric or a similarity metric, that there is a 

difference between the plausibility trace of the original untransformed set and that of the 

transformed sets.  In each of the transformation algorithms, the normalizing interval(s) is 

required to transform the originally non-consonant and or non-consistent set.  Thus, the 

characteristics of the normalizing interval or selected consonant normalizing intervals are 

related to the differences between transformed sets and their closeness to the original set.    

This chapter develops the relationship between the normalizing interval and consonant 

intervals and the "likeness" of the transformed set to the original set.  This is      
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6.2 Essential Properties of the Transformed Set 

 

The ambition here is to obtain a transformed set that is most “relevant” to the original 

untransformed set.  In other words, the transformed set that is most like the original set is 

desired.  This can be accomplished by comparing the plausibility trace of the original set 

to that of the transformed set.  The plausibility trace of this transformed set that is most 

like that of the original set is the desired transformed set.  At the same time, it is also 

desired that this transformed set will have a low uncertainty (Nonspecificity, Strife and 

Aggregate Uncertainty); however, this is treated secondary to the "likeness" between the 

two sets.  As mentioned previously, there are various metrics available for determining 

the “likeness” between two distributions and, as discussed in Chapter 2, the Similarity 

metric as well as the Hamming distance metric are used here.      

 

 

6.3 Consistent Transformation  

 

In considering Examples 5.7 – 5.10 of Chapter 5, it appears that in almost every array of 

transformed sets the similarity measures are equivalent to one another.  However, based 

only on the similarity measure it is impossible to determine which transformed set is 

“more like” the original untransformed set.  Additional information is needed, which is 

provided by the Hamming distance metric.  The transformed set with the minimum 

Hamming distance value is the "least different" from the original set.   Hence, we 

conclude that the similarity metric chosen is not sufficient to determine which 
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transformed set is most like the original set.  An additional metric, measuring likeness, is 

required to determine which transformed set is most like the original set.  Therefore, the 

Hamming distance metric is used along with the Similarity metric.             

 

For consistent transformation, Joslyn [8] has suggested selecting the normalizing interval 

based on maximal plausibility, which distorts the ordering of the original distribution as 

little as possible.  Lets extend this further and base the selection on the smallest 

normalizing interval with the maximal plausibility.  Considering the consistent 

transformation of the disjoint set of Example 5.7 in Chapter 5, Option 7B uses the 

smallest normalizing interval with the maximal plausibility trace.  This results in a 

possibility distribution very similar to the original plausibility trace, as demonstrated with 

the Hamming distance measure which is a minimum for Option 7B.  In Examples 5.8 and 

5.10 of Chapter 5 a minimum Hamming distance value is again demonstrated.   In both 

examples there exists two normalizing intervals with a maximal and identical plausibility 

trace however, the size of each is different.  In both examples, the normalizing interval 

with minimal size results in a transformed set with a plausibility trace much like that of 

the original plausibility trace.       

 

Now consider the overlapping set of Example 5.9, where Option 9B uses a normalizing 

interval with maximal plausibility.  However, based on the plausibility trace, it does not 

produce the transformed set most like that of the original set.   In this case, Option 9D 

uses a normalizing interval that is smaller in both plausibility and length than the 

normalizing interval of Option 9B, yet its transformed set is closer to that of the original.  
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Again, this seems to confirm that minimal “size” (minimal cardinality) is an essential 

selection criteria for the normalizing interval in consistent transformation.  It appears that 

in consistent transformation, using the algorithm developed by Joslyn [8, 9], that size as 

well as the plausibility are related to the “likeness” of the transformed set to the original 

set.  Hence, the normalizing interval should be selected based on maximal plausibility as 

well as minimal size.       

 

 

6.4 Consonant Transformation 

 

The selection of consonant intervals for consonant transformation is more complex than 

the selection of a single normalizing interval, as is required in consistent transformation.  

In this investigation we employ the “fast algorithm” developed by Ross & Donald [1] to 

assist in the elimination of inconsistencies and the selection of intervals to place in groups 

H and I.  Levels are assigned to each interval based on their consonance with other 

intervals.  Intervals that do not include any other intervals are assigned level 1 (or 

minimal level), the intervals that include level 1 intervals are assigned a level 2, intervals 

that include level 2 intervals are assigned level 3 and so on.  With the use of these levels, 

consonant sub-collections are formed.   As is the case for Example 5.1, we have two 

consonant sub-collections, each producing two different transformed sets.  Again the task 

at hand is to determine the transformed set that is most like that of the original 

untransformed set.  In this example, the two groups of selected consonant sets (Options) 

are identical with the exception of 1 interval in each consonant set ([20, 28) and [21, 29)).  
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Here Option 1A produces the plausibility distribution most like that of the original 

untransformed set.  Interval [21, 29) has a greater plausibility than [20, 28).  When 

conflicts such as this arise (where two intervals have equal levels and are not minimal) 

then it is first checked to determine which interval is included by more intervals; the 

interval that is included by more super-intervals is selected.  If both are included by the 

same number super-intervals then the interval with maximal plausibility is selected.  As is 

often the case, when equal plausibility exists, then the interval with the most common 

points is selected.  This procedure produces a transformed set most like that of the 

original.  This procedure is verified in the first 5 examples of Chapter 5. 

 

Following the above procedure, for the overlapping set of Example 5.2, we are presented 

with a conflict between minimal intervals of Option 2B and Option 2D.  For minimal 

intervals, the smaller interval with the max plausibility produces a transformed set most 

like that of the original set.  This is demonstrated in Examples 5.2 and 5.6.                    

 

6.5  Nonspecificity and Strife 

 

The Uncertainty is regarded as a secondary condition to the "likeness" between the 

transformed set.  Two important components of Uncertainty are Strife (ST) and 

Nonspecificity (N); ST is a function for the measure of the conflict in evidence where as 

the function N measures nonspecificity in the evidence.  Through consistent and 

consonant transformation the Strife of the set seems to be decreased which is expected.  

However, the Nonspecificity is often increased from that of the original set.  
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6.6 Chapter Summary 

 

For consistent transformation, a normalizing interval with minimal length and maximal 

plausibility produces a transformed set that is closest to the original. 

In consonant transformation, selection of the consonant set makes use of a fast algorithm 

proposed by Ross [1] to form the consonant set.  Conflict among non-minimal consonant 

intervals is eliminated and is based on the interval's consonance in other sets as well as 

the plausibility and points in common with the rest of the set.  Conflict among non-

minimal intervals is based on minimum size and maximum plausibility.  The uncertainty 

of the transformed sets is desired to be minimal, however it is secondary to the "likeness" 

requirement.  Through the use of consistent or consonant transformation the Strife seems 

to decreased, and the resulting transformed sets have more agreement than the original 

set. 
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Chapter 7 

 

 

Conclusions 

 

 

7.1 Chapter Introduction 

 

This chapter discusses the results of this investigation including essentials required to 

automate the transformation algorithms and eliminate analyst subjectivity.  It goes on to 

discuss the contributions of this investigation on engineering applications where these 

algorithms are applicable. The chapter then points out that there should be no doubt with 

the findings of this investigation and their applications to continuous systems however 

this is an area for further study.  An additional area for further study would be to compare 

the consonant transformed sets obtained from Jolsyn’s algorithm [8, 9] with those 

obtained from the Donald [4] algorithm.     

 

7.2 Automation of Transformation Algorithms 

 

Chapter 6 explains the association between the characteristics of the normalizing interval 

and selected consonant intervals and the resulting consistent and consonant transformed 

sets, respectively.  This association is determined using both the minimum Hamming 

distance as well as the maximum Similarity.  In consistent transformation, the 

normalizing interval producing the transformed set that most resembles the information 
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portrayed by the original untransformed set is the normalizing interval with minimal 

length and maximal plausibility.  In consonant transformation, the selected minimal 

consonant interval is selected in the same manner as the normalizing interval for 

consistent transformation.  However, maximal consonant intervals are selected based on 

maximal consonance in other super-intervals, maximal plausibility and maximum points 

in common with the other intervals.  Based on this criteria, the automation of the 

transformation algorithms is complete and analyst subjectivity is avoided. 

 

The elimination of the subjectivity and automation of the algorithms allows them to be 

applied more efficiently and with less subjectivity.  This is extremely important in 

engineering applications involving interval data, such as the buckling of hollow, metallic 

sphere presented in Chapter 1.  The processing of possibility distributions for engineering 

applications consisting of a various types of interval data can now be accomplished in a 

less subjective and more efficient way.  

 

 

7.3 Resulting Uncertainty 

 

In regards to the uncertainty in evidence due to Strife, there is a decrease for consistently 

transformed sets and an even greater decrease for consonantly transformed sets.  

Generally, the Nonspecificity among evidence seems to increases for consonant 

transformation but occasionally there is a decrease.  However, in consistent 

transformation there seems to be a general increase in Nonspecificity. 
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7.4 Discrete and Continuous Sets  

 

Discrete interval sets are required for metrics and algorithms used in this investigation, 

however other metrics for determining the “likeness” between the original set and the 

transformed set could be used that do not require that the interval sets be discrete sets.  In 

measuring the distance between two distributions of the same length formed from interval 

data of non-discrete interval sets, the distance is measured by modifying the Hamming 

distance metric where the summation becomes integration.  The choice of using discrete 

interval sets was simply to conform to the metrics used in this study, the general utility of 

the findings are not limited to discrete interval sets.     

 

 

7.5 Future Research 

 

The examination of a larger variety of interval data would strengthen the results of this 

investigation, which should include continuous interval sets.  Also, Jolsyn’s 

transformation algorithm contains an additional step that forms a consonant set.  In 

addition to examining a larger variety of interval data it would be beneficial to compare 

the resulting transformed consonant sets obtained using both algorithms.  This could be 

accomplished by comparing the uncertainties and “likeness” for the resulting transformed 

sets from both algorithms.  The findings of this research are valuable to the study of 

possibilistic normalizing methods, however solid conclusions are dependant on the 

results of an analytical study as well. 
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7.6 Long-Term use of Possibility Distributions in Reliability Assessments 

 
Very recent studies [13] have shown that the possibility distribution method can ultimately 

be used as a guide in determining how well an analyst understands the extent of the 

relationship between modeling uncertainty and variability.  A probability density function 

(pdf) reflects the amount of variability in a simulation.  In contrast, the possibility 

distribution reflects the amount of predictive uncertainty (which is the sum of variability 

and modeling uncertainty) in the simulation. In Figure 1.3c one sees two different 

distributions that can be used to assess the differences between modeling uncertainty and 

variability.  On the one hand, the predictive uncertainty and the variability could be almost 

the same if the aprons on the possibility distribution function have a near vertical slope 

(the pdf is a large part of the possibility distribution).  On the other hand, the predictive 

uncertainty and the variability could be vastly disparate if the aprons on the possibility 

distribution function are have very low slopes (the pdf is a small part of the possibility 

distribution).  Hence, in a sort of graphical way, the difference in the regions mapped by 

the variability (pdf) and the possibility distribution is a quantitative assessment of the 

modeling uncertainty in a problem.  In this sense, the boundary regions of the possibility 

distribution can be used as a guide about where, specifically, we need more information in 

any planned future testing to reduce total uncertainty. 

 

7.7 Chapter Summary 

 

The results of this investigation describe the implications of the normalizing interval(s) 

characteristics on the transformed sets.  The results of consonant transformation, using 
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the algorithm developed by Ross & Donald [4], suggest that the selection of minimal 

intervals should be based on maximal plausibility and minimal size.   Whereas, the 

selection of non-minimal intervals should be based on the maximal inclusion of the 

interval in super-intervals, then maximum plausibility, and lastly number of discrete 

elements in common with other intervals of the focal set.  The results of consistent 

transformation, using the algorithm developed by Joslyn [8, 9], suggest that the selection 

of the normalizing interval should be based on not only maximal plausibility but minimal 

size as well as.  Automation of the transformation algorithms is accomplished by 

employing the results mentioned above.  Automation removes the analyst subjectivity 

and produces a transformed set that is most like that of the original set.   

 

The limitations made on the random intervals (discrete sets with elements defined at 

every integer) may have had an affect on the results.  Further research should be 

conducted in this area to eliminate this doubt. The examination of a larger variety of 

interval data would also be beneficial in forming a complete investigation of this subject.  

The findings of this research are valuable to the study of possibilistic normalizing 

methods, however solid conclusions are dependant on the results of an analytical study as 

well.            
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