
Los Alamos National Laboratory Associate Directorate for Theory, Simulation, and Computation (ADTSC) LA-UR 13-2083988

Co-Design for Molecular Dynamics: An Exascale Proxy Application

Jamaludin Mohd-Yusof,
Sriram Swaminarayan, CCS-7;
Timothy C. Germann, T-1

Roadrunner demonstrated the need to understand the interaction between high-performance hardware
and software as early in the development process as possible. One mechanism being used to
explore this interaction is the notion of proxy applications that provide a means to test both hardware
and software modifications while retaining the essential workload of a real application. Co-designed
Molecular Dynamics (CoMD) is one of the proxy “apps” being employed for this purpose by the
Exascale Co-Design Center for Materials in Extreme Environments (ExMatEx). We present examples
of the options available within CoMD and their effects, as well as potential impacts of future hardware
modifications.

Molecular dynamics (MD) simulations represent a significant fraction
of the DOE workload, as they provide the fidelity required to

examine materials’ response to extreme conditions. Examples of interest
include nuclear reactor lifetime extension and nuclear stockpile aging.
Achieving the fidelity required to simulate these problems at scale will
continue to require the largest computational resources available.

High-performance computing (HPC) is currently undergoing a transition
period where a variety of new architectures are being explored.
Roadrunner was the first example of a hybrid supercomputer, and
required a huge effort to enable codes to run on it [1]. The options

available for future exascale
machines include accelerators
derived from graphics processing
units (GPUs), many-core accelerators
such as the Intel Many-Integrated-
Core (MIC) architecture, and
evolutions from existing CPU
architectures from AMD, Intel, and
IBM. Each of these hardware choices
presents tradeoffs in terms of their
relative performance when running
scientific computing algorithms.
These algorithms, in turn, represent

varying workloads to the machine, in terms of both intra-node and inter-
node requirements.

ExMatEx is one of several efforts to develop a framework in which these
hardware-software interactions can be explored. This will enable both the
hardware vendors and software developers to co-optimize their products
to ensure that future machines are able to provide the performance
needed to solve these challenging problems. Part of this strategy uses
proxy applications (“proxy apps”) that encapsulate the workload of
an actual science application. These simplified applications are more
amenable to testing and analysis than existing production applications
and are available to external collaborators.

The CoMD proxy app represents the typical workload and use cases
of MD simulations of material dynamics. We expect that algorithmic
improvements and optimizations will ultimately be incorporated into
DOE production MD codes such as LAMMPS, ddcMD, and SPaSM.
CoMD represents the fundamental workflow in such simulations from
problem setup, equilibration, time integration, analysis/visualization, to
checkpoint/restart.

For the development of CoMD, the SPaSM code was chosen as a
starting point because the code transformations made to port SPaSM
to Roadrunner form a good basis for those needed to optimize an
exascale code. In particular, the separation of local work and inter-node
communication to reduce latency provide a framework that allows us to
concentrate on optimizing the local (intra-node) performance.

MD solves Newton’s laws of motion for individual atoms–for short-range
interatomic potentials typical of metals and other neutral, non-ionic
systems this requires the evaluation of an interatomic force on each atom
arising from all neighboring atoms within a potential-dependent cutoff
radius. For our targeted class of materials (metals) that radius typically
corresponds to a few interatomic spacings within a lattice, so only
10-100 atoms are within the cutoff. This informs the choice of domain
decomposition (spatial) and the use of a link-cell formulation for ordering
particles and iterating particle pairs (see Fig. 1). In typical production
runs, approximately 95% of the simulation time (aside from checkpoint
I/O and in situ analysis/visualization, which vary widely depending on
needs) is spent computing the forces on atoms, giving a clear hot-spot for
optimization efforts.

In order to explore the tradeoffs discussed earlier, various options are
incorporated into CoMD.

• Execution models. The base version of CoMD is a simple serial code
and provides the reference for all other variants. OpenCL and OpenMP
versions are also provided to allow testing on GPUs and multi/many-
core processors.

Fig. 1. Sketch showing an example of
link-cell data decomposition. The link
cells are larger than the cutoff radius for
the interatomic potential, so that a search
of neighboring cells covers all particles
within the cutoff. The tuning parameter
box factor is the ratio of the link cell size
to the cutoff and can be varied to tune the
granularity of the data decomposition.
The left sketch shows a box factor of
1, while the right shows the same data
decomposed with box factor 1.5.

INFORMATION
SCIENCE AND
TECHNOLOGY

www.lanl.gov/orgs/adtsc/publications.php 89

applications and architectures that is
based on a domain-specific language.
The Aspen developers at ORNL
constructed a model of CoMD and used it
to predict the effect of varying cache size
on a GPU, in this case an Nvidia Tesla M
2090, as shown in Fig. 4.

A significant component of the co-
design loop is to engage vendors so
that changes to future hardware can be
incorporated when feasible. CoMD is
being used by NVIDIA, AMD, IBM and
Intel as a representative workload to study the performance
impacts of various design tradeoffs in future processors.

CoMD is one of a suite of proxy apps being developed as
part of the ExMatEx project. It provides a variety of options,
with more under development, to allow hardware and
software developers to understand the tradeoffs needed for
future exascale applications. Additional information can be
found at https://github.com/exmatex.

• Data Layout. The natural
way to think of particle
data is as a structure–for
example, the position,
velocity, and force each
have three components
[x, y, z]. In memory, we can
group these three
components together to
form an Array-of-Structures
(AoS, Fig. 2a).
Alternatively, we could
separate the x-component

data (for all the particles) in contiguous arrays, forming a
Structure-of-Arrays (SoA, Fig. 2b). The base version of
CoMD utilizes an AoS data layout that mimics that in
SPaSM. The OpenCL version has both AoS and SoA data
layouts to evaluate the relative performance on a variety
of architectures. An example of the importance of data
layout is shown in Fig. 3.

• Potential Representation. For metals, Embedded
Atom Method (EAM) tabulated data is traditionally used
to represent the interatomic potential. These tables are
too large to fit into the shared cache of many newer
architectures, so we provide the option to use polynomial
approximations which require a small (user-selectable)
number of coefficients but increase arithmetic intensity.

• Data Decomposition. Depending on the arithmetic
intensity of the algorithm, the performance of the code
may be determined by the ability to access memory
efficiently. We provide a “box factor,” the ratio of link
cell size to the cutoff radius (see Fig. 1), as a tuning
parameter. This makes more efficient use of loads from
main memory and also reduces the frequency of re-
sorting particles between link cells, which can itself be a
bottleneck in some situations.

Although it is helpful to measure the performance
differences between different implementations on current
hardware, we also need to understand the effects that
hardware changes may have on performance. Aspen [2]
is a framework for the analytical modeling of exascale

For more information contact Jamaludin Mohd-Yusof
at jamal@lanl.gov.

[1] First Science at the
Petascale: Results from the
Roadrunner Supercomputer,
October 2010. LA-UR-10-06728

[2] Spafford, K. and Vetter,
J.S., “Aspen: A domain Specific
Language for Performance
Modeling,” SC12: ACM/IEEE
International Conference for
HPC, Networking, Stoage, and
Analysis, 2012.

Funding Acknowledgments
DOE, Office of Science, Advanced Scientific Computing Research
Program, ExMatEx Project

Fig. 2. Sketch of AoS, (top) and
SoA, (bottom) data layouts. The
different colors represent different
data components, for example, the
x, y, and z components of particle
position. In the CoMD code,
typical AoS data would include
the three components of particle
position and the mass. Each
data layout provides different
benefits in terms of data locality
and vectorizability of operations,
among other factors.

Fig. 3. An example of the
effect of data layout choices on
application performance. The
same OpenCL code is run on
an AMD Opteron CPU, ATI
Cypress GPU and Nvidia C2050
GPU, using AoS or SoA data
layouts. The Opteron performs
poorly on the AoS layout. The
GPUs show less sensitivity, but
differing trends with respect to
data layout. The differences may
also be attributable to the OpenCL
compiler provided by each
vendor, showing the importance
of the entire hardware/software
ecosystem on performance.

Fig. 4. Predicted performance improvement on an Nvidia M2090
GPU for EAM table lookup, if the cache expanded to hold all the table
data. Such predictions can provide important insight for vendors when
designing future architectures, as well as for software developers seeking
to maximally exploit a given architecture.

