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Roadrunner demonstrated the need to understand the interaction between high-performance hardware 
and software as early in the development process as possible. One mechanism being used to 
explore this interaction is the notion of proxy applications that provide a means to test both hardware 
and software modifications while retaining the essential workload of a real application. Co-designed 
Molecular Dynamics (CoMD) is one of the proxy “apps” being employed for this purpose by the 
Exascale Co-Design Center for Materials in Extreme Environments (ExMatEx). We present examples 
of the options available within CoMD and their effects, as well as potential impacts of future hardware 
modifications. 

Molecular dynamics (MD) simulations represent a significant fraction 
of the DOE workload, as they provide the fidelity required to 

examine materials’ response to extreme conditions. Examples of interest 
include nuclear reactor lifetime extension and nuclear stockpile aging. 
Achieving the fidelity required to simulate these problems at scale will 
continue to require the largest computational resources available. 

High-performance computing (HPC) is currently undergoing a transition 
period where a variety of new architectures are being explored. 
Roadrunner was the first example of a hybrid supercomputer, and 
required a huge effort to enable codes to run on it [1]. The options 

available for future exascale 
machines include accelerators 
derived from graphics processing 
units (GPUs), many-core accelerators 
such as the Intel Many-Integrated-
Core (MIC) architecture, and 
evolutions from existing CPU 
architectures from AMD, Intel, and 
IBM. Each of these hardware choices 
presents tradeoffs in terms of their 
relative performance when running 
scientific computing algorithms. 
These algorithms, in turn, represent 

varying workloads to the machine, in terms of both intra-node and inter-
node requirements. 

ExMatEx is one of several efforts to develop a framework in which these 
hardware-software interactions can be explored. This will enable both the 
hardware vendors and software developers to co-optimize their products 
to ensure that future machines are able to provide the performance 
needed to solve these challenging problems. Part of this strategy uses 
proxy applications (“proxy apps”) that encapsulate the workload of 
an actual science application. These simplified applications are more 
amenable to testing and analysis than existing production applications 
and are available to external collaborators.

The CoMD proxy app represents the typical workload and use cases 
of MD simulations of material dynamics. We expect that algorithmic 
improvements and optimizations will ultimately be incorporated into 
DOE production MD codes such as LAMMPS, ddcMD, and SPaSM. 
CoMD represents the fundamental workflow in such simulations from 
problem setup, equilibration, time integration, analysis/visualization, to 
checkpoint/restart.

For the development of CoMD, the SPaSM code was chosen as a 
starting point because the code transformations made to port SPaSM 
to Roadrunner form a good basis for those needed to optimize an 
exascale code. In particular, the separation of local work and inter-node 
communication to reduce latency provide a framework that allows us to 
concentrate on optimizing the local (intra-node) performance.

MD solves Newton’s laws of motion for individual atoms–for short-range 
interatomic potentials typical of metals and other neutral, non-ionic 
systems this requires the evaluation of an interatomic force on each atom 
arising from all neighboring atoms within a potential-dependent cutoff 
radius. For our targeted class of materials (metals) that radius typically 
corresponds to a few interatomic spacings within a lattice, so only 
10-100 atoms are within the cutoff. This informs the choice of domain 
decomposition (spatial) and the use of a link-cell formulation for ordering 
particles and iterating particle pairs (see Fig. 1). In typical production 
runs, approximately 95% of the simulation time (aside from checkpoint 
I/O and in situ analysis/visualization, which vary widely depending on 
needs) is spent computing the forces on atoms, giving a clear hot-spot for 
optimization efforts.

In order to explore the tradeoffs discussed earlier, various options are 
incorporated into CoMD. 

• Execution models. The base version of CoMD is a simple serial code 
and provides the reference for all other variants. OpenCL and OpenMP 
versions are also provided to allow testing on GPUs and multi/many-
core processors.

Fig. 1. Sketch showing an example of 
link-cell data decomposition. The link 
cells are larger than the cutoff radius for 
the interatomic potential, so that a search 
of neighboring cells covers all particles 
within the cutoff. The tuning parameter 
box factor is the ratio of the link cell size 
to the cutoff and can be varied to tune the 
granularity of the data decomposition. 
The left sketch shows a box factor of 
1, while the right shows the same data 
decomposed with box factor 1.5.
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applications and architectures that is 
based on a domain-specific language. 
The Aspen developers at ORNL 
constructed a model of CoMD and used it 
to predict the effect of varying cache size 
on a GPU, in this case an Nvidia Tesla M 
2090, as shown in Fig. 4.

A significant component of the co-
design loop is to engage vendors so 
that changes to future hardware can be 
incorporated when feasible. CoMD is 
being used by NVIDIA, AMD, IBM and 
Intel as a representative workload to study the performance 
impacts of various design tradeoffs in future processors.

CoMD is one of a suite of proxy apps being developed as 
part of the ExMatEx project. It provides a variety of options, 
with more under development, to allow hardware and 
software developers to understand the tradeoffs needed for 
future exascale applications. Additional information can be 
found at https://github.com/exmatex.

• Data Layout. The natural 
way to think of particle 
data is as a structure–for 
example, the position, 
velocity, and force each 
have three components  
[x, y, z]. In memory, we can 
group these three 
components together to 
form an Array-of-Structures 
(AoS, Fig. 2a). 
Alternatively, we could 
separate the x-component 

data (for all the particles) in contiguous arrays, forming a 
Structure-of-Arrays (SoA, Fig. 2b). The base version of 
CoMD utilizes an AoS data layout that mimics that in 
SPaSM. The OpenCL version has both AoS and SoA data 
layouts to evaluate the relative performance on a variety 
of architectures. An example of the importance of data 
layout is shown in Fig. 3.

• Potential Representation. For metals, Embedded 
Atom Method (EAM) tabulated data is traditionally used 
to represent the interatomic potential. These tables are 
too large to fit into the shared cache of many newer 
architectures, so we provide the option to use polynomial 
approximations which require a small (user-selectable) 
number of coefficients but increase arithmetic intensity.

• Data Decomposition. Depending on the arithmetic 
intensity of the algorithm, the performance of the code 
may be determined by the ability to access memory 
efficiently. We provide a “box factor,” the ratio of link 
cell size to the cutoff radius (see Fig. 1), as a tuning 
parameter. This makes more efficient use of loads from 
main memory and also reduces the frequency of re-
sorting particles between link cells, which can itself be a 
bottleneck in some situations.

Although it is helpful to measure the performance 
differences between different implementations on current 
hardware, we also need to understand the effects that 
hardware changes may have on performance. Aspen [2] 
is a framework for the analytical modeling of exascale 
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Fig. 2. Sketch of AoS, (top) and 
SoA, (bottom) data layouts. The 
different colors represent different 
data components, for example, the 
x, y, and z components of particle 
position. In the CoMD code, 
typical AoS data would include 
the three components of particle 
position and the mass. Each 
data layout provides different 
benefits in terms of data locality 
and vectorizability of operations, 
among other factors.

Fig. 3. An example of the 
effect of data layout choices on 
application performance. The 
same OpenCL code is run on 
an AMD Opteron CPU, ATI 
Cypress GPU and Nvidia C2050 
GPU, using AoS or SoA data 
layouts. The Opteron performs 
poorly on the AoS layout. The 
GPUs show less sensitivity, but 
differing trends with respect to 
data layout. The differences may 
also be attributable to the OpenCL 
compiler provided by each 
vendor, showing the importance 
of the entire hardware/software 
ecosystem on performance.

Fig. 4. Predicted performance improvement on an Nvidia M2090 
GPU for EAM table lookup, if the cache expanded to hold all the table 
data. Such predictions can provide important insight for vendors when 
designing future architectures, as well as for software developers seeking 
to maximally exploit a given architecture.


