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Dislocation structures within individual crystals organize into patterns ranging from tangles to cells to 
planar walls, becoming more refined as stress or strain increases. Under a drive, pileups and intermittent 
dynamics arise near the depinning transition, but correlations between patterning and the intensity of 
applied stress or strain have not been established. We demonstrate that driven dislocation assemblies 
exhibit the same non-equilibrium phases as those observed for collectively interacting particle systems, 
such as vortices in superconductors or sliding charge-density waves. The analogous phases are a 
jammed state below yielding, a strongly fluctuating intermediate state above yielding, and a quasi-
ordered phase at higher drives, detectable via dislocation structure, mobility, velocity distribution, and 
velocity noise. This implies that many established results obtained for driven vortices can be applied to 
dislocation dynamics.

The dynamics and pattern formation of dislocations are of tremendous 
importance for understanding materials properties. Driven 

dislocations are also an outstanding example of a non-equilibrium many-
body system where a number of competing interactions come 
into play. Of particular interest is how the dislocations can 
organize themselves into patterns under different applied 
loads, how these patterns can be characterized, and whether 
there are distinct dynamic phases as a function of load. 
It is known that organized dislocation structures within 
individual crystals, such as tangles, cells, or planar walls, 
can become more refined and better defined as stress or 
strain increases.

2D and 3D dislocation dynamics simulations based on linear 
elasticity theory predict self-organization of dislocation 
assemblies into varying configurations, such as pileups near 
the yielding or depinning transition [1] and 2D mobile walls 
[2] or 3D slip bands [3,4] under an external drive. Below 
a critical stress where dislocations show no net motion, 

the system is considered jammed [5], while intermittent or strongly 
fluctuating behavior with highly jerky or avalanche-like motion occurs 
above the critical stress [1,4]. Avalanche behavior with power-law 
velocity distributions is proposed to be a signature of critical dynamics 
[1,4-6]. No correlations between the transitions in patterning and the 
intensity of applied stress or strain have been established before now. 
Another important problem is whether the patterning could determine 
how the yielding changes as a function of dislocation density.

We utilize a discrete dislocation dynamics model with periodic boundary 
conditions for a 2D cross-section of a sample containing straight-edge 
dislocations that glide along parallel slip planes. The dislocations 

interact via a long-range anisotropic stress field that is attractive 
between two oppositely signed dislocations and repulsive for liked-signed 
pairs. Under an external applied stress τ

ext, dislocation i moves along x in 
its assigned plane according to an over-damped equation of motion given 
by
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where xi is the x coordinate of ith dislocation at point ri = (xi, yi) with 
Burgers vector bi , η is the effective friction and τint(rj–ri) is the long-
range shear stress on dislocation i generated by dislocation j. For  
r = (x, y) = (xj, yj)–(xi, yi), τint(rj–ri) for an edge dislocation with Burgers 
vector b is
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where μ is the shear modulus and ν is the Poisson’s ratio.

After randomly placing the dislocations in the simulation volume, the 
system is allowed to relax without external load, so that the dislocations 
can achieve an equilibrium configuration to minimize the system energy 
(Fig. 1(a)). With external load Fd increasing, the dislocation structure 
changes(Fig. 1(a)-(d)) and produces signatures in <|v|> versus Fd as 
shown in Fig. 2.

Below yielding, the dislocation pattern slowly changes and gradually 
forms a dipolar wall (Fig. 1(b)) after each load increment but <|v|>goes 
to zero in the long-time limit, indicating that the system is in the jammed 
phase below the critical yield. Just above yielding, the dipolar wall 
structure breaks down as shown in Fig. 1(c) and the system enters a 
state characterized by strong fluctuations in the dislocation positions. 

Fig . 1. Stress maps of the sample range 
from large negative (blue) to large 
positive (red) stress. (a) The initial 
dislocation positions at zero load. (b) Just 
before yielding, the dislocations are 
predominantly located at pile-ups to form 
a single bipolar wall. (c) Above yielding 
at Fd = 3.6, the wall breaks apart and the 
structure exhibits intermittent dynamics. 
(d) At Fd = 8.0 there is a dynamical 
ordering into polarized walls, each 
composed of dislocations with the same 
Burgers vector orientation.
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Under high drive, the 
dislocations form unipolar 
walls composed of only one 
type of dislocation, either 
negative or positive as 
shown in Fig. 1(d).

By conducting a series 
of simulations for varied 
dislocation densities, ρ, 
and analyzing the ordering 
dynamics, we construct the 
dynamic phase diagram 
shown in Fig. 3. The lower 
curve indicates the yielding 
transition from the low drive 

jammed or pinned phase of dipolar walls to the fluctuating 
disordered phase. The onset of the dynamically ordered 
phase is defined as the force at which the unipolar wall 
structures start to form, and is plotted in the upper curve. 
As ρ increases, the yielding point rises to higher Fd since the 
dislocations have a more difficult time breaking through the 
dipolar walls that form. The increase in yield threshold with 
increasing ρ remains robust when we perform simulations 
with different initial dislocation configurations. In addition, 
the onset of the high-drive dynamically ordered phase also 
increases in a similar fashion with increasing ρ. This phase 
diagram exhibits the same features observed for vortex 
systems as a function of pinning strength versus external 
drive, where both the critical depinning force and the onset 
of the ordering rise to higher drives with increasing pinning 
strength [7].

To summarize, we have shown that driven dislocation 
assemblies exhibit several distinct non-equilibrium phases 
as a function of drive that are associated with the formation 
of distinct dislocation patterns. The jammed to yielding 
transition is correlated with the formation of 1D dislocation 
pile ups, and above yielding the system transitions into 
a fluctuating intermittent phase where the dislocation 
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Fig. 2. (a) P+- (blue squares), the 
fraction of dipolar walls, versus 
Fd has a peak just below yielding. 
P--,++ (black circles), the fraction 
of uni-polar walls, passes through 
a plateau when the polarized wall 
state forms. B (red triangles) is a 
measure of the net Burgers vector 
in the walls. (b) The average 
absolute value of the dislocation 
velocity <|v|> (solid lower curve) 
versus Fd. The upper dashed curve 
shows <|v|> for non-interacting 
dislocations. Visible in the lower 
curve is a yielding point, a 
nonlinear region corresponding 
to the disordered or fluctuating 
regime, and a linear region at 
high drives when the system is 
dynamically ordered. Points a, 
b, c, and d indicate the Fd values 
illustrated in Fig. 1.

Fig. 3. The dynamical phase 
diagram Fd versus 1/ρ, where ρ 
is the dislocation density. The 
lower curve (red circles) indicates 
the onset of yielding and the 
upper curve (black squares) is the 
onset of the dynamically induced 
ordered phase; the fluctuating 
phase falls between the two 
curves. Both the critical yielding 
and the dynamical ordering shift 
to higher drives as the ρ increases. 
Inset: The same curves plotted on 
a log-log scale.

structures break apart and reform. This is followed at 
higher loads by a more ordered state of moving polarized 
dislocation walls. All of the states are associated with 
transport signatures such as changes in the transport 
noise fluctuations as well as features in the dislocation 
velocity versus applied shear, in analogy with velocity-force 
curves. We also find that the transition from the jammed 
state to the polarized moving wall state moves linearly to 
higher load with the dislocation density. Finally, we note 
that many of the features described here are remarkably 
similar to the dynamic phases observed in driven many-body 
systems with quenched disorder, such as vortices in type-II 
superconductors.


