
Los Alamos National Laboratory Associate Directorate for Theory, Simulation, and Computation (ADTSC) LA-UR 13-2083910

M-Adaptation for Acoustic Wave Equation in 3D

Vitaliy Gyrya,  
Konstantin Lipnikov, T-5

Numerical modeling of wave propagation is essential for a large number of applied problems in 
acoustics, elasticity, and electromagnetics. The acoustic equation is one of the simplest examples of 
equation modeling wave propagation. For long integration times, the dominant contributions to an error 
in the solution come from such numerical artifacts as numerical dispersion and numerical anisotropy.

Numerical dispersion is the phenomenon in which the propagation 
velocity of the wave in the numerical scheme depends on 

its wavelength, while in the continuum problem there is no such 
dependence. Typically, the effect of the numerical dispersion is greater on 
under-resolved waves with ten or fewer points per wavelength, making 
them travel slower than in the physical problem. As a consequence, 
the wave does not simply arrive at a wrong time (which could be 
compensated for by time rescaling), but also has a highly distorted 
profile. Numerical anisotropy is the dependence of the numerical velocity 

of the wave on its orientation with respect to the 
mesh. We developed an m-adaptation technique for the 
acoustic wave equation in 2D on rectangular meshes. 
We identified the optimal numerical schemes in a 
rich family of second-order Mimetic Finite Difference 
(MFD) schemes that are fourth-order accurate for 
the numerical dispersion. On square meshes these 
schemes could be further optimized to be sixth-order 
accurate for numerical anisotropy. We refined the 
m-adaptation technique to be used in 3D on cuboid 
meshes. We identified fourth-order accurate schemes 
in the family of second-order MFD schemes. The 
resulting schemes have a nearly optimal time-step 
stability condition within the family.

The original and the semi-discrete forms of the 
acoustic wave equation in the time domain formulation are

                            utt = c Δu and Mutt = Au		  (1)

where the mass and stiffness matrices M and A are assembled from 
elemental matrices ME and AE, and where c is the wave-speed. Since the 
mass matrix M has to be inverted on every time step, the explicit time 
discretization of equation (1) is computationally efficient only when the 
inverse M-1 is easy to compute. One of the approaches is to replace the 
mass matrix M with a diagonal matrix D by lumping nondiagonal entries 

to the diagonal. This does not change the order of the numerical scheme, 
but may lead to an undesirable increase of numerical dispersion. 

Another approach [1] is to replace the inverse M-1 with the product 
D-1MD-1, where the inverse is taken only for the diagonal matrix D. 
Similar to lumping, this approach does not change the order of the 
numerical scheme. One can modify the stiffness and the mass matrices 
A and M using modified quadrature rules as is done in [2]. On square 
and cubic meshes, this approach produces schemes that are fourth-order 
accurate for numerical dispersion; however, this approach fails to do so 
in the more challenging case of rectangular and cuboid meshes.

Our approach has some similarities with [2] but is significantly more 
general. In fact, the schemes produced by [2] are a subset of the 
schemes analyzed in our approach, dubbed m-adaptation. We consider a 
parameterized MFD family of numerical schemes from which we select 
a member with the smallest numerical dispersion and anisotropy. The 
parameters in the MFD family appear through the elemental mass and 
stiffness matrices MMFD and AMFD, respectively. In 3D, the number of 
parameters is significantly larger than in 2D, so the techniques used in 
2D are no longer tractable. For example, in 2D on a rectangular mesh 
the elemental matrices MMFD and AMFD depend on two parameters and 
one parameter ζ, respectively. In 3D on cuboid meshes the elemental 
matrices MMFD and AMFD depend on 28 and 10 parameters, respectively. 

The MFD family parameterized by (miζj) contains a large number of 
known methods as special cases, for example, standard Finite Difference 
(FD), rotated FD, weighted combination of standard and rotated FD, 
Finite Element (FE) with lumped mass matrix, and modified quadrature 
method [2]. Moreover, compared with the later method, the MFD family 
is richer–containing 36 more parameters.

For the acoustic wave equation in 2D we selected the optimal parameters 
(m1 m2,ζ) based on the von-Neumann analysis. In 3D, due to a much 
larger number of parameters, this approach was no longer tractable. We 
replaced this approach with another one, where we cancel the errors 

Fig. 1. Relative error in the numerical 
speed of the wave ch as a function of 
resolution parameter κh (number of 
 
points per wavelength N=        ) for 
 
various directions κ of the wave exp 
(κ • x - ct / κ) . The m-adaptation on 
cuboid mesh (right) has the same fourth-
order convergence rate as the modified 
quadrature method on cubic mesh (left).
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coming from the spatial and temporal discretizations for 
plane polynomial waves (κx-ωτ)P of degrees p = 1,…,4 for 
all possible directions and magnitudes of vector κ . The 
seemingly infinite set of conditions for canceling the two 
errors can be condensed into a system of 21 equations 
that depend bilinearly on the elemental mass and stiffness 
matrices (thus on the parameters). The current state of the 
art for solutions for systems of bilinear equations does not 
allow for writing the solution for the system in an explicit 
form. Therefore, we have to rely on numerical solution of 
the system.

In addition to satisfying the above-mentioned 21 conditions, 
the set of 38 parameters has to yield positive definite 
mass and stiffness matrices. Moreover, the largest 
time step for which the scheme is numerically stable is 
inversely proportional to the largest eigenvalues of the 
matrices. Thus, we have to control both the largest and 
smallest eigenvalues of the mass and stiffness matrices. 
We identified and implemented an iterative numerical 
procedure for the solution of the above system subject to 
the optimization of eigenvalues. Based on this procedure, 
we found numerical schemes among second-order accurate 
MFD schemes that are fourth-order accurate for numerical 
dispersion both on cubic and non-cubic cuboid meshes.

We tested the optimized schemes using the dispersion 
relation, which in 3D has a similar form to the one we 
obtained in 2D for rectangular meshes. Once presented in 
logarithmic scale for the relative numerical error, it clearly 
shows fourth-order accuracy for the numerical dispersion 
(Fig. 1). This is the same accuracy as obtained by the 
modified quadrature scheme [2], but now it is achieved 
on general cuboid meshes. Moreover, on cubic meshes–
although we obtained the same fourth-order accurate 
schemes as the modified quadrature schemes–our schemes 
had a stable time step that was larger by at least 10%.

As another test, we simulated a radially symmetric wave 
spreading from the origin, starting with Gaussian 
displacement and zero initial velocity. The radial symmetry 

tests the numerical anisotropy, while the Gaussian profile 
(containing all wave frequencies) tests the numerical 
dispersion. The test shows that the optimized scheme on 
cuboid mesh Δx = .1, Δy = Δz = .15 , with Δt = .07  has 
comparable dispersion to that of the modified quadrature 
scheme on a cubic mesh Δx = Δy = Δz = .15 with  
Δt = .07  and both produce very little dispersion for a mean 
wavelength of the Gaussian corresponding to 12 points per 
wavelength (κh ≈ 0.5).

In the future, we plan to develop the m-adaptation technique 
for higher order schemes on general meshes and for elastic 
wave equations. The advantages of m-adaptation are that 
at a cost of some preprocessing one finds a fourth-order 
accurate scheme that has the complexity of a second-
order one, requiring no matrix inversion during time step, 
therefore making it very efficient and accurate at the same 
time.
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Fig. 2. Displacement as a function 
of the distance from the origin 
at time T = 3.6 obtained using 
the modified quadrature method 
on cubic mesh (left) and the 
m-adaptation method on cuboid 
mesh (right) for a Gaussian initial 
displacement data.
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