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The energy spectra of gamma-rays emitted by radioisotopes act as fingerprints that enable identification 
of the source. Such identification from low-resolution sodium iodide (NaI) detectors over short time 
periods is challenging for several reasons, including the Poisson fluctuations in the recorded counts. 
Smoothing the data over neighboring energy bins can reduce noise in the raw counts, at the cost of 
introducing a bias that de-emphasizes the peaks and valleys of the spectrum. This note describes 
a new two-stage smoothing procedure that uses a multiplicative bias correction for adjusting initial 
smoothed spectra. The benefits of this new method are illustrated on real spectra.

Performance of radioisotope identification (RIID) algorithms using 
gamma-ray spectroscopy is a subject of increasing importance. For 

example, sensors deployed at locations that screen for illicit nuclear 
material rely on isotope identification to resolve innocent nuisance 
alarms arising from naturally occurring radioactive material (NORM) 
[1-3]. Studies comparing the energy spectra measured by low, medium, 
and high resolution detectors suggest that relatively low-resolution 
detectors, such as sodium iodide (NaI) detectors that typically count the 
number of gamma photons in 512 or 1024 calibrated energy channels, 
will continue to play a key role in NORM identification [1]. However, 
RIID performance from the raw counts collected over short time 
intervals is strongly impacted by intrinsic variations from Poisson count 
statistics.

Various strategies for improving the RIID by reducing the noise in the 
data are being considered. One noise-reduction strategy is to smooth the 
spectral data over neighboring energy bins. This smoothing decreases 

the variance of the raw counts at the cost of 
introducing some bias that de-emphasizes 
the peaks and valleys of the spectrum. Most 
smoothers also distort peak shape by 
broadening the base and midsection. 
Preliminary results in [4] suggest, but do 
not prove, that substituting the raw NaI 
spectral counts with their smoothed values 
can lead to improved performance of 
existing RIID algorithms. Even better 
performance can be expected if one can 
reduce the bias of the smoothed counts 
without substantially increasing their 
variance.

Reference [5] describes a new two-stage smoother that uses a 
multiplicative bias correction (MBC) for adjusting initial smoothed 
energy spectra, thereby correcting some of the deficiencies of traditional 
smoothers. Reference [6] describes the effect of the MBC-smoother in 
the context of detecting injected point-like threat isotopes onto each of 
many real vehicle profiles.

The bias of main concern in smoothing spectral data is the tendency 
by all smoothers (local polynomial, local kernel, wavelet, etc.) to 
underestimate the peaks and overestimate the valleys of the true 
spectrum f(x). The true count rate as a function of energy x is denoted 
f(x), and the observed count rate in a given spectrum is denoted  
y = f(x) + e (see Fig. 1). High-degree-of-freedom fits, such as the 
100-degree-of-freedom spline in Fig. 1, will have smaller bias in the 
peaks, but larger variance in the off peaks. As a result, the peaks are 
fit very well, but the smoother tends to generate spurious smaller 
peaks. The opposite is true for low-degree-of-freedom fits, in which the 
smoother fails to fully catch the peaks but does not tend to introduce 
additional spurious peaks.

Finding a smoother that minimizes the root mean squared error (RMSE) 
does not by itself guarantee that the resulting smoother has desirable 
properties at the peaks while not generating spurious ones. This leaves 
open the question of selecting the smoothing parameter. Instead of 
attempting to optimize the bandwidth h for the RIID application, we 
focus on estimating the bias and correcting the initial smoother using 
that estimate. This is not a new idea, but the application is new, and 
most of the approaches described in the literature focus on additive 
corrections of the bias. Such corrections may not be desirable in the 
present context, as they can lead to negative-valued energy spectra that 
are undesirable as input into existing RIID algorithms.

Fig. 1. Example 232Th spectrum for 
one minute, for sixty minutes (top), 
and two example spline fits (bottom). 
The 100 df spline over-fits the off-peak 
channels. The 35 df spline over-
smooths the peaks and valleys.
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A recent attractive alternative [5 is to apply 
an MBC to an initial smoother. The asymptotic 
analysis and small sample simulations in [7] 
show that this method is effective at reducing the 
bias of the initial smoother without increasing the 
variance. As a result, one obtains estimates for 
the smoothed spectra that better fit the peaks and 
valleys but do not introduce additional spurious 
peaks or under-smooth the flat regions. For good 
performance, the MBC approach needs the initial 
smoother to not under-smooth. Over-smoothing by 
the initial smoother is acceptable. Therefore, we 
used cross-validation to select the bandwidth for 
the initial smoother. Cross-validation [8] involves 
leaving out x,y pairs while calculating the smooth 

function at trial bandwidths and then testing the performance of the trial 
bandwidths on the held-out pairs.

For completeness, we describe the MBC smoother here. Starting with 
an initial kernel smoother for
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Each value Ri is an unbiased, but noisy, estimate of the relative bias in 
the ith energy bin. Smoothing the latter gives rise to a multiplicative 
correction factor 2, 2
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= ∑  for the initial smoother. 

Multiplying the predicted spectrum by the latter leads to the estimate 
                              for the energy spectra f(x), and in particular the 
estimate                      for the expected counts of gamma-photons in the 
ith bin. Neither the bandwidth nor the smoother for the correction factor 
need be the same as for the initial smoother.

Figure 2 illustrates the MBC for the same 232Th source as in Fig. 1. 
Notice again at least three distinct peaks and notice the trend in            , 

which suggests that peaks will be better estimated using the corrected 
values       rather than predictions from the initial smoother        .

In NaI spectra, peak width varies as a function of energy because 
detector resolution varies with energy. Adaptive smoothing is therefore 
preferred. There are two main options for the adaptive smoothing of 

 y = f(x) + e. One option is to adjust the local bandwidth according to 
the local density of the x data. This option is not relevant for our context 
because of equally spaced x values, regardless of whether one regards 
x to be energy or channel number. A second option is to identify regions 
of rapid change in y, such as peak regions, and modify the bandwidth 
accordingly. In effect, the MBC applies the second option. However, note 
that the MBC does not require one to identify the peak regions. This 
is a key advantage of the MBC, which provides adaptive smoothing, 
by “smoothing less” in the peaks. Smoothing less in the peaks occurs 
because the ratio 
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=  used in the MBC tends to pull

the first smooth iy ,1ˆ   toward  iy  and hence leads to “smoothing less,” 
as desired in the peaks.

We have found that both smoothing splines and a local kernel smoother 
(such as lokern) work well as a second smoother, although that choice is 
not critical.
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Fig. 2. Example 232Th spectrum for 
3600 seconds, for 60 seconds, and 
a lokerns fit with and without the 
multiplicative bias correction; (bottom) 
The ratio 
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