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We introduce a novel malware detection algorithm based on the analysis of graphs that are constructed 
from dynamically collected instruction traces of the target executable. These graphs represent Markov 
chains, where the vertices are the instructions and the transition probabilities are estimated by the data 
contained in the trace. We use a combination of graph kernels to create a similarity matrix between 
the instruction trace graphs. The resulting graph kernel measures similarity between graphs on both 
local and global levels. Finally, the similarity matrix is sent to a support vector machine to perform 
classification. Our method is particularly appealing because we do not base our classifications on the 
raw n-gram data, but rather use our data representation to perform classification in graph space. Our 
results show a statistically significant improvement over signature-based and other machine-learning-
based detection methods.

Malware continues to be an ongoing threat to modern computing. 
In 2010, more than 286 million unique variants of malware were 

detected [1]. Despite the majority of this new malware being created 
through polymorphism and simple code obfuscation techniques, and 
thus being very similar to known malware, it is still not detected by 
signature-based anti-virus programs [2]. With the ever-increasing 
proliferation of these threats, it is important to develop new techniques 
to detect and contain these malware.

Many of the current anti-virus programs available rely on a signature-
based approach to classify programs as being either malicious or benign. 
Signature-based approaches are popular due to their low false positive 
rate and low computational complexity on the end host, both of which 
are appealing for daily usage. Unfortunately, these schemes have been 
shown to be easily defeated by simple code obfuscation techniques [2]. 
With the ease of creating a new virus through these techniques and 
polymorphic viruses becoming more prevalent, non-signature-based 
methods are becoming more attractive.

To combat these issues, several researchers began to look at less strict 
measures to detect malicious code. These methods have generally 
revolved around n-gram analysis of the static binary or dynamic trace of 
the malicious program [3]. These methods have shown great promise in 
detecting zero-day malware, but there are drawbacks related to these 
approaches. The two parameters generally associated with n-gram 
models are n, the length of the subsequences being analyzed, and L, the 

number of n-grams to analyze. For larger values of n and L, there is a 
much more expressive feature space that should be able to discriminate 
between malware and benign software more easily. But with these larger 
values of n and L, we run into the curse of dimensionality: the feature 
space becomes too large and we do not have enough data to sufficiently 
condition the model. With smaller values of n and L, the feature space 
becomes too small and discriminatory power is lost.

For our research, we use a modified version of the Ether Malware 
Analysis framework [4] to perform the data collection. Ether is a set of 
extensions on top of the Xen virtual machine. Malware frequently uses 
self-protection measures to thwart debugging and analysis. Ether uses 
a tactic of zero modification to be able to track and analyze a running 
system. Zero modifications preserve the sterility of the infected system, 
and reduce the methods that malware authors can use to detect if their 
malware is being analyzed. Increasing the complexity of detection makes 
for a much more robust analysis system. We use these modifications to 
allow for deeper introspection of the application programming interface 
(API) and import internals [5].

Our data representation gets away from the need to specify the 
appropriate n and L. Instead we model the dynamic instruction trace 
as a Markov chain represented by a weighted, directed graph. The 
instructions of the program are represented as vertices, and the weights 
of the edges are the transition probabilities of the Markov chain, 
which are estimated using the program trace we collect. An example 

Fig. 1. A hypothetical fragment of 
a full Markov chain graph. In a real 
Markov chain graph, all of the out-
going edges would sum to 1.
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of a hypothetical Markov chain graph is 
presented in Fig. 1. The novel contribution 
we present is to construct a similarity, or 
kernel, matrix between the Markov chain 
graphs and use this matrix to perform 
classification.

Our approach makes use of two types of 
kernels: a Gaussian kernel and a spectral 
kernel. The notions of similarity that these 
two kernels measure are quite distinct, 
and we found them to complement each 
other very well. The Gaussian kernel 
searches for local similarities between the 
adjacency matrices. It works by taking 
the exponential of the squared distances 
between corresponding edges in the weighted 
adjacency matrices. The motivation behind 
this kernel is that two different classes of 

programs should have different pathways of execution, which would 
result in a low similarity score.

The other kernel we use is based on spectral techniques [6]. These 
methods use the eigenvectors of the graph Laplacian to infer global 
properties about the graph. These eigenvectors encode global 
information about the graph’s smoothness, diameter, number of 
components and stationary distribution, among other things. We then 
construct our second kernel by using a Gaussian kernel on these 
eigenvectors.

If we have two valid kernels, we are assured that a linear combination of 
these two kernels is also a valid kernel. This algebra on kernels allows 
us to elegantly combine kernels that measure very different aspects 
of the input data. We used cross-validation to find a suitable linear 
combination of our two kernels where the weights of the kernels are 
constrained to sum to one. Figure 2 shows a heat map of the combined 
kernel matrix with 19 instances of benign software and 97 instances of 

malicious software. Once the combined kernel matrix is constructed, we 
use a standard support vector machine to perform classification.

To validate our approach, we used a dataset composed of 615 instances 
of benign software and 1,615 instances of malware. We tested our 
combined kernel, Gaussian kernel, spectral kernel, and the n-gram 
methodology using a support vector machine, values of n ranging from 
two to six, and values of L ranging from 500 to 3,000 in increments 
of 500. We also tested against 10 different signature-based anti-virus 
programs. Our combined kernel was the overall winner with an accuracy 
of 96.41%. The best n-gram method with n=3, L=2500 had an accuracy 
of 82.15%. It is interesting to note that all machine-learning-based 
methods easily beat the best signature-based anti-virus, which had an 
accuracy of 73.32%.

Our novel method extends the n-gram methodology by using 2-grams 
to condition the transition probabilities of a Markov chain, and then 
treats that Markov chain as a graph. Taking the Markov chain as a 
graph allows us to utilize the machinery of graph kernels to construct 
a similarity matrix between instances in our training set. We use 
two distinct measures of similarity to construct our kernel matrix: a 
Gaussian kernel, which measures local similarity between the graphs’ 
edges, and a spectral kernel, which measures global similarity between 
the graphs. Given our kernel matrix, we can then train a support vector 
machine to perform classification on new test data.
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Fig. 2. The heat maps of the kernel 
(similarity) matrix for benign software 
versus malware. The smaller block in 
the upper left of the figure represents 
benign software and the larger lower 
right block represents malware.
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