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Spherical centroidal Voronoi tessellations (SCVT) are used in many applications in a variety of fields, 
one being climate modeling. They are a natural choice for spatial discretizations on the Earth, or 
any spherical surface. The climate modeling community, which has started to make use of SCVTs, 
is beginning to focus on exascale computing for large-scale climate simulations. As the data size 
increases, the efficiency of the grid generator becomes extremely important. Current high resolution 
simulations on the earth call for a spatial resolution of about 15 km. In terms of an SCVT this 
corresponds to a quasi-uniform SCVT with roughly 2 million Voronoi cells. Computing this grid serially 
is very expensive and can take on the order of weeks to converge sufficiently for the needs of climate 
modelers. Outlined here is a new algorithm that utilizes existing computational geometry tools such as 
conformal mapping techniques, planar triangulation algorithms, and basic domain decomposition, to 
compute SCVTs in parallel, thus reducing the overall time to convergence. This new algorithm shows 
speedup on the order of 4000 when using 42 processors over STRIPACK in computing a triangulation 
used for generating an SCVT.

Recent developments in ocean and atmospheric modeling allow for 
simulation on Spherical Centroidal Voronoi Tessellations  

(SCVT) [1]. However, SCVTs cannot simply be prescribed, they have to 
be generated. In order to generate a SCVT, algorithms make use of their 
dual mesh, Delaunay Triangulations. Typically SCVTs are generated 
using what is known as Lloyd's algorithm, which can be either 
deterministic of probabilistic [2]. A simple version of this algorithm 
would be as follows:

1) Start with a point set
2) Determine the Delaunay Triangulation of the point set
3) Determine the Voronoi Diagram of the point set
4) Determine the center of mass for each Voronoi Region
5) Replace the point set with the centers of mass
6) Iterate until converged

A Voronoi diagram defines regions where all points contained 
inside of a region are closer to the region's center than they are 
to any other point in the generating set. A special type of Voronoi 
diagram is known as a centroidal Voronoi tessellation, which 
occurs when the center of mass of a Voronoi region is coincident 
with the region's generating point. The spherical variant of a 
centroidal Voronoi tessellation is the same as a planar version, 
but on the surface of a sphere. Current software for determining 

a spherical Voronoi tessellation, such as STRIPACK, are limited in the 
size of meshes they can compute as well as the speed at which they can 
determine the tessellation.

In order to generate high resolution meshes for ocean and atmospheric 
simulations, a new algorithm was developed to compute SCVTs in 
parallel. In order to generate a SCVT in parallel two things are done 
with the point set. First, domain decomposition needs to be used. In 
order to simplify this process, a SCVT that is coarser than the target 
SCVT is used to decompose the surface of the sphere into regions. After 
this is done, tangent planes are defined at each of the region centers. 
Using these tangent planes, points within a region are stereo-graphically 
projected (Fig. 1) into the plane and the Delaunay triangulation is 
computed in a plane. This triangulation can then be mapped onto the 
surface of the sphere with only small modifications, including the 
removal of triangles whose circumcircles extend outside of the region's 
radius. This triangulation is valid because stereographic projections 
preserve circularity, keeping the insides and outsides of circles through 
the projection. The only restrictions in order for a triangle to be 
Delaunay involve its circumcircle being empty, and having three or more 
points on its perimeter.

Fig. 1. Cross-section of a stereo-
graphic projection from a sphere into 
a plane.
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algorithm shows reasonable scaling with when generating a 2.6-million- 
point mesh (Fig. 4).

One issue that arises when exploring the generation of variable 
resolution meshes with this algorithm amounts to poor load balancing. 
This problem is fixed by first sorting points into Voronoi regions for the 
coarse SCVT. After this initial sorting is complete, a regions point set 
consists of the union of the points contained in that region and all of 
that neighboring regions.

Using this new algorithm, high-resolution meshes can now be generated 
in parallel on the surface of the sphere for use in ocean and atmosphere 
models. In addition to providing the capabilities of high resolution mesh 
generation, lower-resolution meshes can be generated in significantly 
less time than previous techniques provided. This method can also be 
ported to be used in a plane by removing the stereographic projection 
portion, and it may be possible to also extend it to allow parallel 
triangulations of an entire 3D sphere using some other techniques. 

For more information contact Douglas W. Jacobsen at douglasj@lanl.gov

Using these techniques the new algorithm for generating an 
SCVT in parallel is as follows:
1) Start with a point set
2) Decompose point set into regions
3) Stereographically project point sets into tangent planes
4) Triangulate points in tangent planes
5) Map triangulations onto sphere
6) Determine centers of mass of Voronoi regions
7) Replace point set with centers of mass
8) Iterated until converged

During the decompose step, a point might exist in more than one region. 
This causes each region to overlap with its neighbors and adds a small 
buffer region that ensures the interior of the region contains the exact 
Delaunay triangulation and Voronoi diagram for the points that need to 
be updated. A naive approach is to define a radius for each region, and 
sort each point using a dot product with the center. If the dot product 
results in a distance that is smaller than the region radius that point will 
be part of that region's computational domain. This overlap is the reason 
that certain triangles need to be removed from the set. If a triangle's 
circumcircle extends outside of its region radius, points outside of the 
current set might be contained inside of the circumcircle, making it no 
longer Delaunay. After points are triangulated, a region only updates 
points contained within its Voronoi region.

This modified version of Lloyd's algorithm can now be used to generate 
SCVTs in parallel using distributed memory systems. An 
implementation of this algorithm is compared with an 
implementation of Lloyd's algorithm using STRIPACK for 
serial triangulations. When using the serial version, the cost 
of computing a triangulation increases non-linearly as the 
problem size increases (Fig. 2). Whereas the parallel version 
provides linear increases in both the cost of triangulation 
and the cost of computing the centers of mass when using 
only two processors (Fig. 3). Adding more processors 
increases the speedup when compared with the STRIPACK 
version to something on the order of O(4000), and this 
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Fig. 2. Timing for different portions of 
a STRIPACK-based SCVT generator.

Fig. 3. Timing for different portions of 
a modified SCVT generator, using two 
processors.

Fig. 4. Scaling for the modified SCVT 
generator using 2621442 generators.


