
Los Alamos National Laboratory Associate Directorate for Theory, Simulation, and Computation (ADTSC) LA-UR 12-2042976

Opportunistic Data-driven Execution of Parallel Programs for
Efficient I/O Services

Kei Davis, CCS-7; Song Jiang, Xuechen Zhang,
Wayne State University

The work described here contributed to research into common runtime elements for programming
models for increasingly parallel scientific applications and computing platforms. A parallel computing
system relies on both process scheduling and input/output (I/O) scheduling to efficiently use resources
and a program's performance hinges on the resource on which it is bottlenecked. Existing process
schedulers and I/O schedulers are independent, but when the bottleneck is I/O there is an opportunity
to alleviate it via cooperation between the I/O and process schedulers: the service efficiency of I/O
requests can be highly dependent on their issuance order, which in turn is heavily influenced by process
scheduling. We conceived a data-driven program execution model in which process scheduling and
request issuance are coordinated to enable high I/O efficiency. Our design, DualPar, was implemented
on the CCS-7 experimental cluster Darwin, and our experiments showed that DualPar can significantly
increase system I/O throughput for relevant benchmarks [1].

Scientific computing is becoming increasingly data-intensive,
with the consequence that the input/output (I/O) system is an

increasingly severe performance bottleneck. In general, when a system
resource becomes a parallel program's performance bottleneck, a
better scheduling policy is sought to alleviate it. If the resource is the
processors, this can be a process scheduling strategy for load balancing
or co-scheduling. If the resource is storage, this could be an optimized
I/O scheduler. In today's systems, when I/O service on the storage

system becomes a program's
bottleneck, the process scheduler
becomes less relevant. This is
especially true when I/O requests
are mostly synchronous, most of
the time the processes are idle
waiting for the completion of their
I/O requests and their scheduling
is essentially a passive reaction to
the progress of I/O operations.

Over decades the I/O stack,
through which I/O requests
pass and are serviced, has been
significantly optimized, such as by
forming larger sequential requests,
hiding I/O time behind compute
time with conservative prefetching,

or increasing the parallelism of data access with parallel file systems.
However, in these scenarios the way in which processes are scheduled
for execution is not considered for its effect on I/O efficiency. I/O
requests are issued by processes and the requested data are consumed
by processes. Therefore, the order in which the requests are issued and
served can be significantly influenced by process scheduling. When a
process is driven by its computation, the computation determines the
request issuance order, which can directly affect the request service
order and I/O efficiency. The throughput of a hard disk for serving
sequential requests can be more than an order of magnitude higher than
that for serving random requests, so I/O request issuance order is a
critical factor in I/O efficiency.

We proposed and implemented a new data-driven execution mode for
parallel programs that is enabled when I/O becomes a bottleneck and
I/O efficiency is being compromised by request issuance order. In this
mode, a process is scheduled to resume its execution not when the
request on which it is currently blocked is completed, but when the data
that it and its peer processes are anticipated to read has been prefetched
into the buffer cache, or the data to write have been buffered in the
cache. This then allows the processes to run longer before they block
on a new I/O request. In the data-driven mode we not only require that
requests of a process be served in a batch, but also that the serving
of requests from different processes be coordinated. This is because
requests from different processes may disruptively compete for disk
service and degrade disk efficiency. Furthermore, this coordination

Fig. 1. The architecture of DualPar.

www.lanl.gov/orgs/adtsc/publications.php 77

INFORMATION SCIENCE AND TECHNOLOGY

creates an opportunity to further improve the request issuance order
to increase access sequentiality and to reduce the number of requests.
Figure 1 illustrates the DualPar architecture.

In brief, we made the following contributions.

•	 We proposed a new program execution mode in which the
scheduling of processes can be explicitly adapted for I/O efficiency.
To this end, we use pre-execution to predict data to be requested
for prefetching and a client-side buffer to hold written data for
efficient writeback. In this way the computation of the program
can be decoupled from the issuance of requests for its needed data,
such that the I/O bottleneck can be alleviated, which cannot be
achieved by conventional disk schedulers.

•	 We designed algorithms, which comprise DualPar, to detect the
condition for enabling and disabling the data-driven mode and to
coordinate data access and process executions.

•	 We implemented these algorithms in the MPICH2 MPI-IO library
for message-passing interface (MPI) programs. We evaluated it
with representative benchmarks, including mpi-io-test, ior-mpi-io,
BTIO, and S3aSim. Experimental measurements on the CCS-7
large-scale experimental cluster Darwin show that DualPar can
significantly improve I/O performance and, equally importantly,
does not significantly degrade performance in other scenarios.

Figure 2 gives an example of relative I/O throughputs of standard
MPI-IO, collective I/O, and DualPar for three concurrent instances of
the BTIO benchmark. As shown, the advantage conferred by DualPar
increases with the degree of parallelism.

Our basic premise was that, in the context of data-intensive computing,
the independence of process scheduling and I/O scheduling, with their
differing priorities, exacerbates the I/O bottleneck when using hard-
disk-based storage. Preliminary experiments supported this premise,
suggesting an opportunity to mitigate the I/O bottleneck via cooperation
between the process and I/O schedulers. A new data-driven execution
mode was conceived wherein processes would be scheduled according
to the immediate (in-memory) availability of their I/O requests, this

[1] Zhang, X. et al., “iTransformer: Using SSD to Improve Disk Scheduling for
High-performance I/O,” 26th IEEE Int Parallel Distr Process Symp, to appear
(2012).

Funding Acknowledgments
DOE NNSA, Advanced Simulation and Computing Program; DOE Office of
Science, Faculty and Student Program

For more information contact Kei Davis at Kei@lanl.gov

Fig. 2. System I/O throughput with three concurrent instances of BTIO benchmark.
We compare throughput with DualPar to those with vanilla MPI-IO and collective IO,
as we increase process parallelism from 16, 64, to 256.

in turn being enabled by the pre-execution of processes. This scheme,
named DualPar, was implemented as part of the MPICH2 MPI-IO library.
Extensive testing showed that DualPar could significantly improve the
performance of I/O-bound parallel benchmarks, whether or not they used
collective I/O. DualPar is transparent to the user, requiring no changes
to application source code.

