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Tie Wei, Daniel Livescu, CCS-2 The dependence on initial conditions of single- and two-mode RTI is investigated using DNS. The single-
mode RTI results compare well to the linear stability analysis, analytical prediction of Goncharov [1], and 
experimental results of Waddell et al. [2]. A new stage, chaotic development, was found at very late time of 
single-mode RTI, after the re-acceleration stage. Details of the shape of the initial perturbation, such as the 
diffusion thickness and perturbation amplitude, have a strong effect on the growth rate during early and late 
time development, but a minimal effect during the potential flow regime, such that the Goncharov “terminal 
velocity” result remains robust. At very late time, single-mode RTI transitions into a chaotic development 
stage, with strong sensitivity to initial conditions. We also studied the effect of initial conditions on two-mode 
RTI, and found that growth is strongly affected by the combination of mode numbers and amplitudes, as well 
as the phase shift between modes. At late times, motions become quite complicated, however some new 
phenomena, such as “leaning,” “ejection,” and “mode resonance” can be identified as significantly influenc-
ing the growth rate.

Rayleigh-Taylor instability (RTI) is an interfacial instability that occurs 
when a high-density fluid is accelerated or supported against gravity by 
a low-density fluid. This instability is of fundamental importance in a 
multitude of applications, ranging from fluidized beds, oceans and 
atmosphere, to inertial confinement fusion (ICF) and supernovae. In this 
work we use direct numerical simulation (DNS) to study the effects of 
initial conditions on single- and two-mode RTI.

All simulations presented here are 2D and were performed with the 
CFDNS code. For numerical details refer to [3]. We have carried out 
extensive resolution studies to ensure that the solution was converged. 
The 2D perturbations were initialized as sine waves. The simulation 
results show excellent agreement with linear stability theory (LST), the 
analytical predictions of Goncharov [1], and the experimental results of 
Waddell et al.[2].

The development of single-mode RTI can 
be divided into a number of stages. First, 
for finite Schmidt (Sc) and Reynolds (Re) 
numbers, if the perturbation amplitude is 
very small and the interface sharp 
enough, the initial development can be 
described by the pure diffusion equation. 
As the amplitude of the perturbation 
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increases, buoyancy starts to dominate the pure diffusion effects and the 
mixing layer width grows exponentially following LST. Next, the 
nonlinear effects become important; however, the flow at the tip at the 
bubble remains potential. Goncharov [1] showed that, in this case, the 
bubble tip moves with constant velocity and, since the vorticity remains 
zero at the tip of the bubble due to symmetry, hypothesized that this is a 
final or “terminal velocity.” Nevertheless, even though the vorticity is 
zero, vortical motions can have nonlocal contributions. Thus, 
Ramabprabhu et al. [4] found that the bubble tip velocity does not 
remain terminal, instead the velocity increases again, due to the induced 
velocity driven by the first vortex pair generated at the interface. They 
called this new stage the re-acceleration stage. Our simulations 
confirmed all these previous findings. Furthermore, we found a new 
stage after the re-acceleration stage. This development stage is 
characterized by complex interactions of vortex motions and has strong 
dependence on the initial conditions. We call this new stage the “chaotic 
development” stage.

The effects of initial conditions on the different stages of single-mode 
RTI have been studied by simulations with different wavelengths, and 
different initial diffusion layer and perturbation thicknesses. For 
example, Fig. 1 shows the density contours of three initial conditions 
with the same wavelength: R02, R1, and R5. The three cases have the 
same diffusion layer thickness, but increasing perturbation thickness. 

Fig. 1. Initial density contours of single-
mode RTI with different initial 
conditions. From left to right: Case 
R02–initial diffusion layer thickness 
larger than initial perturbation 
thickness. Case R1–initial diffusion 
layer thickness about the same as initial 
perturbation thickness. Case R5–initial 
diffusion layer thickness much smaller 
than initial perturbation thickness.
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The corresponding 
mixing layer width 
is shown in Fig. 2. 
The left panel of 
Fig. 2 shows that 
the difference in 
initial perturbation 
thickness causes a 
time shift in the 
mixing layer 
development. The 

right panel of Fig. 2 shows that a proper time shift can collapse the 
mixing layer width for the three cases, except at very early time and at 
very late time. At early times, the diffusion growth is sensible to the 
shape of the interface. The initial conditions have minimal effect during 
the potential flow regime, such that the Goncharov terminal velocity 
result remains robust. Interestingly, at very late time, in the chaotic 
development stage, the development of the mixing layer depends again 
on the initial conditions. This is because small details of the initial 
perturbation shape lead to differences in the vortex formation at the 
interface and can significantly alter the complex vortex interactions.

The mixing layer growth of two-mode RTI is strongly affected by the 
combination of mode numbers as well as the phase shift between modes. 
For example, Fig. 3 shows the initial density contours of three different 
combinations of wave numbers: k2+k10, k3+k9, and k4+k8. The sum of 
the two modes is the same, and the peaks of the initial perturbation are 
also the same. The later evolutions of the three cases become very 
different as shown in Fig. 4. At late times, the motions are quite 
complicated; however, some new phenomena, such as leaning, ejection 
and mode resonance, can be identified as significantly influencing the 
mixing-layer growth. These phenomena are also expected to play a role 
in the local development of the layer front of multi-mode RTI.

Fig. 2.  Left: Evolution of the mixing 
layer width for the three initial 
conditions shown in Fig. 1. Right: Time 
shifted.

Fig. 3. Initial density contours of two-mode RTI with different mode 
combinations. From left to right: k2+k10 (wave number 2 and wave 
number 10); k3+k9; k4+k8.

Fig. 4. Evolution of density contour corresponding to the cases 
shown in Fig. 3.


