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Particle-in-cell (PIC) codes solve the Vlasov equation, the basic 
equation of collisionless plasma kinetic theory. The Vlasov 

equation is a mean field equation, appropriate to hot, collision-
less plasmas. That is, it is assumed that the particles interact only 
through the mean field, which is found by a global field solve from 
the particle positions and, for the case of an electromagnetic code, 
the particle velocities. The basic steps in an electrostatic PIC code 
are: 1) weighting particle positions to the grid, obtaining densities 
for the electron and ion species, 2) solving the Poisson equation for 
the electrostatic potential Φ on the grid and obtaining the electric 
field from Φ, and 3) integrating the particle orbits using this electric 
field, interpolated to the particle positions.

We are in the process of 
developing an electrostatic PIC 
code in 2D (cylindrical or axial 
symmetry) for an arbitrary 
structured mesh. The mesh is 
obtained by mapping from a 
uniform mesh on the logical 
(computational) domain Ξ, 
which we take to be the unit 
square, to an arbitrary non-
uniform mesh on the physical 
space X. At present we are 
using the Winslow method [1] 
of mesh generation, a special 
case of the Laplace-Beltrami 
approach [2]. This method 

produces boundary-conforming grids, allowing modeling of curved 
surfaces without the serious problems of "stair-stepping" in codes 
that use non-boundary-conforming grids. The example in Fig. 1 
shows the mesh appropriate to dusty plasmas, in which the inner 
sphere corresponds to a dust grain, and the mirror image under a 
reflection through the vertical axis gives a second grain (the outer 
boundary represents matching to the rest of a Maxwellian plasma, 
and needs to be at a sufficiently large radius). Note that this method 
allows concentration of cells near a dust grain, to help in resolving the 
dynamics within a few Debye radii of the grain.

In our code all computations are performed on the logical grid on Ξ. 
When mapped to the logical grid the Poisson equation takes the form

 
(summation assumed) where ρ ≡ ρion −ρelectron is the charge density, J 
is the determinant of the Jacobi matrix Jij = ∂ xi/∂ξ j, and 
gij = ∇ξi · ∇ξj  is the contravariant metric tensor on the logical grid. 
The quantity Jρ is the charge density on the logical grid.
The final hurdle is integrating the particle orbits (advancing or 
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Fig. 1. Physical space grid for 
studying the interaction of two 
dust grains in a collisionless 
plasma.

Fig. 2. The energy K as a function of time for three particle integrators.
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satisfied, eliminating the need 
for computationally expensive 
particle search algorithms, 
which would be necessary if the 
computations were done on the 
physical grid.

We have performed the usual 
battery of tests to benchmark 
this code, including cold plasma 
oscillations, warm plasma 
Langmuir waves, Landau 
damping, and the linear and 
nonlinear two-stream instability, 
for a variety of nonuniform 
grids. For all, we have found 
good agreement.

For more information contact 
John M. Finn at finn@lanl.gov.

pushing particles). The standard leapfrog integrator for a uniform 
grid is a symplectic integrator, i.e., conserves the Hamiltonian phase 
space structure. However, on a nonuniform grid standard (naive), 
leapfrog is not a symplectic integrator. We introduce a contact 
transformation (x, p) → (ξ, P) by a generating function S(x, P)= 
ξi(x)Pi, leading to a new Hamiltonian (for a time-independent grid)

 

where q and m are the particle charge and mass, respectively. The fact 
that the Hamiltonian is not separable (it is of the form  
K = T (P, ξ)+V (ξ )) prevents naive leapfrog from being a symplectic 
integrator. To integrate the Hamiltonian equations of motion, we 
use a generalization (from 2D phase space to 4D) of the modified 
leapfrog integrator introduced in [3]. This time-centered, second-
order accurate integrator involves a combination of implicit and 
explicit split-steps and preserves the Hamiltonian nature of the phase 
space exactly.

Figure 2 shows the orbits and a test of the energy conservation for 
this integrator on a nonuniform grid, compared with naive leapfrog 
integrators. The latter were performed with the straight Newtonian 
equations of motion and with the Hamiltonian equations using 
K, respectively. It is clear that in the nonsymplectic integrators, the 
orbits spiral in, losing energy, so that PIC runs must be severely 
limited in time step. The orbits from the symplectic integrator spiral 
without dissipation or growth for all time. Further, the energy is 
conserved to O(∆t)2, the expected order in ∆t and does not decay or 
grow systematically.

For integration into a full PIC code, an important factor is that, for 
uniform grids, the particle shapes required for density weighting 
and for electric field interpolation must be identical [4]. For 
nonuniform grids this condition must be modified: the two particle 
shapes must be adjoints of each other. If this condition is satisfied, 
the total momentum is conserved, and the so-called self-force is 
zero. Since our discretization is on the uniform logical mesh, the 
particle shapes are symmetric and this condition is automatically 

Fig. 3. Phase space for the three particle integrators, showing spiraling in 
for the two naive leapfrog integrators and good phase space conservation 
for the modified leapfrog integrator.


