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The Jayenne Implicit Monte Carlo (IMC) Project [1] in 
CCS-2 is a computational physics software project for 
simulating thermal X-ray transport using the Fleck 

and Cummings IMC algorithm [2]. These thermal X-ray 
simulations often are part of larger radiation-hydrodynamic 
simulations of such high-energy-density phenomena as 
supernovae and inertial confinement fusion. We highlight 
three of the improvements made during the year 2008.  

Calculating the Number of Source Particles. In the 
IMC method, the X-ray energy is represented by Monte 
Carlo particles. For each timestep, the particles can come 
from different types of sources (emission, spatial boundary 
sources, and initial-time step source), and they can be 
distributed throughout the spatial domain of the simulation 
problem. Constraints are to keep the total number of 
particles at the user requested value and to give each particle 
approximately the same energy-weight. Determining the 
particle distribution is, roughly, an integer optimization 
problem. Algorithmically, we are trying to find the root of:

                  F=N(Nguess) – Nrequested = 0  

where N( ) is the function that determines the full 
distribution of particles for a given guess of total numbers 
of particles. The old algorithm was based on a linear 
residual between iterations and could catastrophically and 
surreptitiously fail by giving the user nearly zero particles in 
any given time step, thus propagating large errors thereafter. 
Our new algorithm is a composite method (similar to that 
of Brent’s [3]) that uses the old linear residual to start, 
false position, Ridders’ method [4], and bisection, and that 

uses a new stopping criterion. As shown in Fig. 1, the new 
algorithm solves the issues with the old algorithm, and, when 
coupled to a temperature cutoff to avoid sampling particles in 
unimportant regions, it becomes a very robust algorithm for 
sourcing IMC particles.  

Asynchronous Transport Schemes. When the Jayenne 
Project started in 1997, one of its goals was to be massively 
parallel. Large, highly resolved problems cannot fit an entire 
mesh on a single processor, so hopes of “embarrassingly 
parallel” IMC via mesh replication were limited. Thus, 
domain decomposition (DD) parallelism was built into 
the Jayenne Project at the outset. With DD, a particle 
transports until it reaches the edge of the spatial domain on 
that processor, then it is buffered, and the buffers are sent 
to the processor containing the next spatial domain. The 
management of communicating these buffers poses a problem 
for efficiency and robustness. Our original asynchronous 
algorithm had each processor performing a continuous loop 
over the following prioritized options: a) transport N source 
particles, b) look for incoming particles and transport them, 
c) flush outgoing buffers, d) check for incoming buffers, or  
e) send number of particles completed to Node0 and 
check for all-finished flag. Running on LANL’s SGI O2 
Bluemountain supercomputer of that era, we could not run 
with N>1.  

Fig. 1. The new particle 
sourcing algorithm avoids 
the undersampling problems 
with the old algorithm and 
typically gives at least the 
number of particles requested.
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Fig. 2. Opacity distribution 
functions here require four 
times less memory and, thus, 
appear to converge much 
quicker than the regular 
multigroup approach.
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In 2004, Tom Brunner, SNL, started comparing and 
improving both our method and a method from LLNL. 
He started with N>1, added a binary tree on the work-
completed and all-finished messages, and replaced loops over 
MPI Test with one MPI_Testsome call [5]. Subsequently, 
he added true asynchronous Sends and a way to handle 
a dynamically changing number of particles as happens 
with Monte Carlo splitting. We analyzed his results and 
found that, although we would like to make our individual 
Sends truly asynchronous, the biggest bang for the buck 
was using N>1. We came up with an empirical formula 
for automatically setting N. Speedups were on the order of 
2 to 4.  

Opacity Distribution Functions. The usual way to 
represent particle-frequency dependence in the material 
opacity data is to divide the frequency span into groups and, 
with an assumed weighting function, average the data to get 
one opacity value per group. Unfortunately, this multigroup 
(MG) approach cannot practically resolve the detailed 
structure in the data. The Opacity Distribution Function 
(ODF) method was first presented in 1935 [6] to represent a 
fuller range of opacities inside each frequency group. Thus, 
each group has multiple opacity values. Used mainly in 
stellar atmosphere simulations, ODFs were not typically used 
in high-energy-density simulations. We have implemented 
ODFs using opacity data from the X-1 code TOPS. Our 
results for a Marshak wave in iron, Fig. 2, show that the 
32-group/8-band ODF reproduces 1024 groups in standard 
MG for a factor of four in memory savings.  

Nevertheless, the ODF method loses all frequency 
dependence within a group, which adversely affects 
transporting to new materials/cells, and could reduce the 
accuracy of material motion and Compton algorithms. We 
initiated research on a modification to the ODF method that 
attempts to better correlate the band opacity values to the 
frequency. Our approach was to retain, from the underlying 
data, the minimum and maximum frequency within each 
band. Then, allowing for shadowing between bands, we 
could sample a frequency given a band (and the inverse) 

accurately within a group for monotonic 
or single-peaked opacity-versus-frequency 
data. Our approach does not have the 
desired accuracy-to-memory value, but it 
can pave the way for more sophisticated 
ways to represent high-order opacity-
frequency data in low-order forms.   

For further information contact Todd 
Urbatsch at tmonster@lanl.gov.   
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