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Fig. 1. Target density.

Grid generation and adaptation by Monge-
Kantorovich optimization [1] produces optimal 
grids that equidistribute the local grid error, thereby 

minimizing the total error [2]. Optimality [1] was defined as 
minimizing the L2 norm

                      

with the local constraint that the map x′ = x′(x) has 
Jacobian det[∂ (x′)/∂ (x)] equal to ρ(x)/ρ′(x′), where ρ(x) and 
ρ′(x′) are the local errors at successive time steps (initial and 
target densities). In [1] it was shown that this method 
approximately minimizes the distortion of the map (the trace 
of the covariant metric tensor), and that the resulting 
equation, the Monge-Ampère equation, can be effectively 
solved by multigrid preconditioned Newton-Krylov methods.

In [3] we extended this approach to more general domains 
in 2D and to 3D, showing that the advantages detailed in [1] 
apply to these more general cases.

We have recently investigated the Lp form of this error 
equidistribution problem. That is, we minimize

with the same Jacobian (equidistribution) constraint det 
[∂ (x′)/∂ (x)] = ρ(x)/ρ′(x′), for p>1. The motivation for 
considering p ≠ 2 is that, relative to ||x′ - xp  
for 1 <p<2, ||x′ - x2  penalizes very little for small 
excursions but greatly for large excursions. Also, there has 
been a considerable amount of work in the mathematics 

literature for p=1, involving the use of the deformation 
method, discussed in [1]. Minimizing ||x′–x||p with the 
Jacobian constraint, we conclude that

                          	               (1)		
						       
where µ(x) is the Legendre transform of  a Lagrange 
multiplier enforcing the Jacobian constraint. The form 
corresponding to (1) for p=2 is x′=x +∇m(x). In the 
difficult limit p → 1, we find that µ(x) satisfies the Eikonal 
equation |∇µ|=1. Substituting equation (1) into the 
Jacobian condition, we obtain a generalized Monge-Ampère 
equation for µ(x). We have found that this equation can also 
be solved by Newton-Krylov methods.

In Fig. 1 we show a target density ρ′(x′), which is peaked 
at x=0.7, y=0.9, and the ratio of the maximum to the 
minimum density is ~22. The initial density is ρ(x)=1. In 
Fig. 2 we show the grid x′ obtained with these densities for a 
uniform initial grid x, using various values for p. For p > 1.5, 
the grids seem reasonable, concentrated near the peak of ρ′ 
and with little distortion, i.e., the cells are close to square.  

For p=2, the grid lines are orthogonal to the boundary.  
For p<1.5, and especially for p →1, some of the cells are 
seriously distorted and stretch from the origin to the peak 
of ρ′ at x=0.7, y=0.9. (The darker grid lines have x=0.25, 
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x=0.75, y=0.25, y=0.75 and are shown to emphasize the 
distortion for small p.) Further, the grid lines are far from 
orthogonal to the boundary. This adverse behavior near the 
boundary and especially near the corner (0, 0) for p →1 
is traced to the fact that for p=1, µ satisfies the Eikonal 
equation, which leads to a boundary layer for p close to unity.

More quantitative measures of the grid quality are contained 
in Table 1. The rows are labeled by pc, which specifies the 
value of p used in the computations. The columns are labeled 
by pm, the value of p for which the norm is measured. For 
example, for the highlighted in red entry with pc=1.01 and 
pm=2, we computed the map solving the generalized Monge-
Ampère equation with p=pc, but measured ||x′–x||p for 
p=pm. (The norms are scaled to the diagonal value with  
pm = pc with unity subtracted.) Note that in all cases, the 
terms below the diagonal are smaller than the transposed 
values pm ↔ pc. That is, computing the grid with large pc 
works well even when quality is measured by small pm, 
whereas computing with small pc leads to large norms  
||x′–x||pm

 for large pm. It appears that pc=2 works well, 
but from this measure larger pc seems slightly better. Note, 
however, that the measured distortion (mean of the trace of 
the metric tensor) is minimal at pc=2 , orders of magnitude 
larger for small pc and a factor of 10 larger for p=2.5. 
Overall, these results indicate that pc=2 leads to the highest 
quality grids.

Fig. 2. Grids for various p.

Table 1. Values of the pm norm and the mean distortion for calculations with p=pc
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↓pc\ 
pm→

1 1.01 1.02 1.05 1.1 1.25 1.5 1.75 2 2.25 2.5 Dis-
tortion

1.01 0.0000 0 0.0000 0.0004 0.0018 0.0103 0.0320 0.0572 0.0833 0.1093 0.1348 0.2501

1.02 0.0001 0.0000 0 0.0002 0.0013 0.0091 0.0295 0.0534 0.0782 0.1029 0.1270 0.2367

1.05 0.0006 0.0004 0.0002 0 0.0005 0.0063 0.0236 0.0444 0.0661 0.0878 0.1089 0.2130

1.1 0.0021 0.0017 0.0013 0.0005 0 0.0031 0.0162 0.0330 0.0510 0.0690 0.0867 0.1687

1.25 0.0092 0.0084 0.0076 0.0054 0.0028 0 0.0043 0.0132 0.0238 0.0351 0.0464 0.0716

1.5 0.0223 0.0210 0.0198 0.0164 0.0118 0.0036 0 0.0020 0.0063 0.0118 0.0178 0.0158

1.75 0.0334 0.0319 0.0304 0.0264 0.0208 0.0096 0.0017 0 0.0011 0.0035 0.0068 0.0018

2 0.0425 0.0408 0.0392 0.0348 0.0285 0.0155 0.0050 0.0010 0 0.0006 0.0022 0.0014

2.25 0.0499 0.0482 0.0464 0.0417 0.0349 0.0207 0.0085 0.0029 0.0006 0 0.0004 0.0069

2.5 0.0561 0.0542 0.0525 0.0475 0.0404 0.0254 0.0118 0.0052 0.0019 0.0004 0 0.0154

Based on these results, we conclude that grid 
generation and adaptation works best with 
p=2. We have also observed that the domain 
of attraction of Newton’s method is largest for 
p=2 and becomes much smaller for p close 
to unity. Further, there is a well-developed 
preconditioning strategy for p=2 [1]. 

For further information contact J. M. Finn 
at finn@lanl.gov.
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