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Fig. 1. Plot of the parabolic 
potential. The dashed line 
represents the potential felt by 
a static system of frequency n0. 
The time-dependent potential 
has an initial frequency ni 
(solid line) and crosses the n0 
value (dashed line) at time t*.

Nonequilbrium systems have both fundamental and 
technological interest as they usually provide a 
richer behavior than their equilibrium counterparts. 

For example, driven systems are those acted on by a 
time-dependent generalized force. In spite of the present 
research interest in nonequilibrium systems across different 
scientific disciplines, little research effort has been devoted 
to the diagnosis of how far a system has been pulled away 
from its equilibrium state. Addressing such an issue is 
both scientifically and technologically relevant, as well as 
challenging. Understanding how far a system has moved 
away from its equilibrium state benefits not only the overall 
understanding of driven systems, but also equilibrium ones.

Consider a particle of mass m in contact with a heat 
reservoir, at temperature T, evolving in a basin of attraction 
provided by a potential V(x). The coupling to the heat 
reservoir is achieved using the well-known Langevin 
dynamics [1]. Langevin dynamics adds a noise term to 
Newton’s equation of motion so that the dynamics accounts 
for the presence of the heat reservoir. Two initial conditions, 
namely, x(0) ≡ x0 and  x(0) ≡ x0, are required to describe the 
motion of the particle. Let us consider a parabolic potential 
depicted in Fig. 1 by the solid line with a natural frequency 
n0. Now, consider two trajectories x1(t) and x2(t) evolving 
according to Langevin dynamics. It has been shown [1] that 
if the provided random noise sequence is common to both 
trajectories, they merge into a single trajectory, the so-called 
master trajectory. This synchronization effect is illustrated in 
Fig. 2a for a pair of undriven trajectories.

Now consider the case of a particle being kept away from its 
equilibrium state under the influence of a time-dependent 
parabolic potential basin with an initial frequency ni. The 

rate at which the initial frequency changes in time sets a 
natural time scale that we denote as the driving rate, a. 
Similar to the static trajectories, Fig. 2b shows a schematic 
of a pair of driven trajectories also merging into a (driven) 
master trajectory. We were able to obtain an exact, closed-
form, analytical solution for the case of a pair of trajectories 
in a time-dependent parabolic potential. At the instant 
the frequency of the driven system takes the value n0 at 
time t*, one can also measure the mismatches between the 
driven and undriven (master) trajectories. Of course, one 
does not expect the driven and undriven master trajectories 
to exactly coincide at t*, so this mismatch represents a 
measure of how far the driven system has been pulled away 
from its equilibrium state as it crosses n0. One expects the 
synchronization level to be dependence on the driving rate, a. 
The idea can easily be grasped by noticing that at vanishingly 
small driving rates, the synchronization level must match 
that of a static system. The dependency on the driving rate 
a can actually be observed in the log-log plot shown in 
Fig. 3, where the mismatch in the synchronization increases 
with increasing values of the driving rate. At high driving 
rates, comparable to the natural frequency n0 of the basin, 
nonlinear terms become relevant.
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Fig. 2. Schematic examples of 
pairs of trajectories merging 
into a master trajectory for 
the (a) time-independent and 
(b) time-dependent potentials. 
Jagged lines represent a way 
of cartooning the effect of 
Langevin dynamics. Both 
the static and driven pairs of 
trajectories synchronize into 
a master trajectory at a time 
ts < t*. Notice that ts does 
not have to be the same for 
the driven and static systems. 
The synchronization level is 
computed as the driven system 
crosses n0 at time t*.

Fig. 3. Mismatch (deviation 
from perfect synchronization) 
between the positions of 
the driven and undriven 
trajectories  n(t)= n0, 
averaged over 104 pairs of 
trajectories. The coupling 
strength to the heat reservoir 
is g= 1012 s-1.

In summary, studying the synchronization of pairs of 
trajectories evolving accordingly to Langevin dynamics and 
sharing the same noise sequence allows an understanding of 
the timescale required for their thermalization in a particular 
basin, as well as the degree of departure from equilibrium 
for a driven system. As Fig. 3 shows, for driving rates 
comparable to the natural frequency of the basin, nonlinear 
terms become relevant, which can help define more elaborate 
ways to classify departure from equilibrium. Even at 
extremely low driving rates, there is deviation from perfect 
equilibrium, which we can quantify with this approach. We 
are also exploring the connection between this disruption of 
synchronization and the deviations in the instantaneous rate 
constants in the system. This in turn will give us a simple 
way to quantify and control errors in the application of 
parallel replica dynamics [2] to driven systems [3]. In driven 
parallel replica dynamics, it is assumed that there are well-
defined instantaneous rate constants that are independent 
of the driving rate. Finally, we point out that the present 
methodology can be straightforwardly extended to more 
realistic systems with complex potentials and larger numbers 
of particles.

For further information contact Antonio M. Cadilhe at 
cadilhe@lanl.gov.
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