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minimize :	 f(x)
subject to :	 g(x) ≤ 0
		  h(x) = 0.

The reason is that the equality 
constraints define a subspace M of  
that is vanishingly small. The 
probability of a mesh point actually 
lying on M and satisfying the equality 
constraints is 0. The way around this is 
to treat M as a Riemannian manifold, at 
least locally [1]. Then, if we start with a 
point on M we can efficiently stay on M 
as the direct search method proceeds.

What is actually done is to restate (P2) 
as a problem in the tangent space of 
some point on M. Each vector ω in the 
tangent plane will correspond to a 
unique point y on M. We assign to ω the 
function values f(y) and g(y). That is, we 
pullback the objective function and 
inequality constraints from M to the 
tangent plane. But the tangent plane is 
just a copy of some Euclidean space, so 
we can now employ standard direct 
search methods in the tangent plane. 
The situation is illustrated in Fig. 1.
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Direct search methods are 
derivative-free algorithms 
for function minimization. 
They are popular 

optimization methods for nonsmooth, 
noisy, and discontinuous. Additionally, 
a user may not have access to or trust 
the available derivative information. 
One major attraction of derivative-free 
algorithms is the ease with which they 
can be coded. A typical optimization 
problem for a direct search method is 
(P1):

minimize :	 f(x)			 
subject to :	 g(x) ≤ 0.

We’ll take the inequality constraints in 
(P1) as defining some full dimensional 
region . The way that direct search 
methods typically precede is to lie out 
some mesh around the current iterate in 

. The function f(x) is then evaluated at 
the points on the current mesh.

A major difficulty with direct search 
methods is their ability to handle 
problems of the form (P2):

Fig. 1.
General setup for 
performing a direct 
search over a manifold. 
The Expx  function is 
a mapping from the 
tangent space TxM to 
the manifold M.
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Our technique is especially useful if M 
is a Lie group or some other well-
understood manifold [2]. In this case, 
closed form solutions are available for 
the mapping from ω to y. However, 
even when M is defined as a level set, 
finding the mapping from the tangent 
space to M has proven feasible [1, 3].
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