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uncertainty is greatly reduced. 
However, we may be inappropriately 
assigning the same variance to groups 
whose variances are actually quite 
different. Some middle ground is 
needed.

The middle ground is provided through 
the use of Bayesian methods, using an 
approach known as hierarchical 
modeling. We introduce different 
variance parameters for each group. 
However, we do not allow these 
estimates to vary freely; they must come 
from a “population distribution” that is 
determined, in typical Bayesian fashion, 
from a combination of “prior infor-
mation” and data, where the data are 
from all the groups combined. In this 
way, the data itself are able to influence 
whether the estimates for different 
groups should be constrained to agree 
closely, or allowed to be independent.  

In Fig. 1, we show how the data from 
several groups of replicates can be used 
to improve the estimate of the variance 
in any particular group. The replicate 
variation is assumed to be described by 
an “inverse gamma” distribution, 
parameterized by unknown α and β. 
The key parameter is α: the larger the 
value of α, the better we know σ. The 
figure shows the posterior probability of 
α and β, given 20 groups of 6 replicates 
each, where the prior probability was 
assumed constant. The peak occurs at 
about α = 10, which is close to the value 
of 15 which was used to generate the 
data. We can use this information to 
obtain better estimates of the replicate 
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Over the past year, we have 
been working on the 
problem of estimating 
replicate variation, which is 

the variance in some parameter arising 
from unmodelled differences in 
nominally identical experiments, or 
replicates. Such estimates are essential 
for many purposes, such as comparing 
computational models with 
experimental data.

If all of the experiments are of the same 
type, the problem is very simple: we 
simply use the standard variance 
estimate. Frequently, however, our data 
come from many different types of 
experiments, and the variance may 
differ from one group of experiments to 
the next.

To understand the nature of the 
problem, consider two different models 
we might use to solve this problem. In 
the first model, we assume that the 
variance of the groups is completely 
independent, so we estimate the 
variance separately for each group. 
However, there may be few datapoints 
for each group, so the uncertainty in 
each of the variance estimates may be so 
large as to render them almost 
worthless. If the groups are related, then 
data from one may give information 
about others, and we are throwing out a 
lot of information in each of the 
individual estimates. In the second 
model, we assume that the variances of 
the groups are identical, and we pool all 
of the data. We now have many 
datapoints, and the statistical 



Nuclear Weapons Highlights 2007 LALP-07-041

variance for any particular group, even 
though we did not assume that the 
variance was the same for every group.

For more information contact Timothy 
Wallstrom at tcw@lanl.gov.
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Fig. 1.
Posterior probability 
of α and β.




