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(i.e., does so without nonphysical 
oscillations) [3]. For the nonlinear case, we 
have obtained an exact solution and have 
used it to numerically estimate the time 
order of accuracy of the IMC method [4].

For the linear case, the IMC method 
generates end of time-step energy densities 
through a linear transformation of the 
beginning of time step values

                           xn+1 = Axn	 (1)

where x denotes the radiation and material 
energies. If the time step is constant, then A 
is a constant 2 × 2 matrix of coefficients for 
the problem at hand. The time stability and 
monotonicity of the IMC approximation can 
be investigated by expanding the solution of 
the IMC equations in the eigenvectors of the 
A matrix
                 xn = al1ϕ1 + bl2ϕ2.	 (2)

where l and ϕ denote the eigenvalues and 
eigenvectors of A, respectively, and a and b 
are constants. The first term on the right-
hand side is the exact equilibrium state of 
the system. The second term represents the 
transient behavior between the initial 
condition and thermal equilibrium. Since  
λ1 = 1, the method is stable whenever  
|λ2| < 1 and monotonic whenever  
0 ≤  λ2 < 1. From these conditions, time-  
step limits have been derived that guarantee 
stability and monotonicity of the method. 
These limits have been verified numerically. 
In Fig. 1, the IMC energy densities are 
plotted (in arbitrary energy and time units) 
for a problem in which the time step was 
chosen to be half of the stability limit. It is 
clear that the solution is stable but not 
monotonic and hence nonphysical. In Fig. 2, 
the time step was chosen to be half of the 
monotonicity limit. The exact solution is 
also plotted, and it can be seen that the IMC 
method yields a physically valid result.
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The Implicit Monte Carlo (IMC) 
method for nonlinear, time-
dependent, radiative transfer 
calculations employs a semi-

implicit approximation to the photon 
absorption-emission process within a time 
step [1]. This approximation originates from 
a backward-Euler time discretization of the 
exact equations followed by a linearization 
of the radiation-material coupling. An IMC 
calculation proceeds in a series of time 
steps, each of which consist of a linear 
radiation transport calculation followed by a 
nonlinear material energy update. Although 
the semi-implicit time discretization allows 
the use of larger time steps than a purely 
explicit technique, the method can produce 
nonphysical solutions if the time step is too 
large [2]. We are motivated to understand 
the limitations of this approximation in 
order to ultimately develop an a priori 
time-step control algorithm that avoids 
nonphysical behavior.

To this end we have studied gray 
(frequency-independent), 0-D (space-
independent) problems, in which the 
radiation and material energy densities 
initially coexist in a nonequilibrium 
state. As energy is exchanged between 
the material medium and radiation field 
(via photon absorption and emission) the 
system approaches thermal equilibrium 
asymptotically in time. The time-dependent 
radiation and material energy densities 
are described by a differential radiation 
transport equation that is coupled to 
a differential material energy density 
equation. The equations can be either 
linearly or nonlinearly coupled, depending 
on the form of the material heat capacity. 
For the linear case, we have developed 
conditions that guarantee that the exact 
IMC solution (neglecting statistical error) is 
stable (i.e., progresses toward the analytic 
equilibrium solution) and monotone 
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For the nonlinear case, stability and 
monotonicity limits are much more difficult 
to obtain since the A matrix is no longer 
constant in time. However, a solution to 
the exact radiative transfer equations has 
been obtained (whereas most existing 
benchmarks have been developed for linear 
problems). The solution has been used to 
benchmark the IMC approximation and 
determine its order of accuracy with respect 
to the time variable. For that purpose, 
we examine the integrated error in the 
IMC-predicted time-dependent material 
temperature

                                                                      
					     ,  (3)

where Tn+1 and T(tn+1) denote the IMC 
and exact end of time-step material 
temperatures, respectively. In Fig. 3, the 
RMS error is plotted vs time-step size for  
α = 0, 0.5, and 1. Here, α (where 0 ≤  α ≤ 1) 
is a user-selected parameter that controls the 
time-centering of the absorption-reemission 
approximation. As expected, the numerical 
results indicate that the method is first-order 
accurate in time-step size for  
α = 0 and 1, and second-order accurate for  
α = 0.5. It should be noted that IMC 
absorption-reemission approximation is 
most stable when a = 1, and often this is the 
best choice.

Through the analysis of idealized radiative 
transfer problems, we have learned much 
about the stability, monotonicity, and 
accuracy of the IMC method. In future work, 
we intend to use these results as a guide to 
develop a priori time step controls for more 
complex radiative transfer problems.

For more information contact Scott Mosher 
at swmosher@lanl.gov.
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Fig. 2.
IMC energy densities 
for a time step at half 
of the monotonicity 
limit.
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Fig. 1.
IMC energy densities 
for a time step at half 
of the stability limit.

Fig. 3.
IMC material tempera-
ture RMS error.




