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The simulations employ an 
incompressible MILES [1] code and 
reproduce experimental runs on the 
Linear Electric Motor (LEM) [2,3], which 
used a three-stage acceleration profile—
an initial acceleration stage, followed by 
a sudden deceleration, and a final  
re-acceleration stage (Fig. 1). It is 
expected that not all models will 
completely describe the separation of 
phases during deceleration. This is a 
challenging problem for NS because 
during deceleration, large bubbles 
reverse direction and are shredded 
by smaller bubbles in their way, thus 
generating small-scales that can only 
be resolved at large-grid resolutions. 
Furthermore, the calculations of this 
incompressible flow would have proved 
challenging to compressible codes due 
to their propensity to generate pressure 
waves during sudden changes in 
acceleration. 

Figure 2 (a–d) shows images of the 
turbulent density field from 
experiments and simulations, realized at 
times indicated by the vertical lines in 
Fig. 1. A broadband spectrum of density 
perturbations was used to initialize the 
simulations, since the experiments are 
susceptible to ambient vibrations 
initially, which are expected to have a 
similar spectral structure. A second set 
of calculations with energy confined to a 
narrow band of wavelengths was 
performed, giving inferior agreement 
with the experimental results compared 
with the broadband cases [3]. The 
subsequent evolution of the bubble 
penetration depth is shown in Fig. 3 and 
was found to be sensitive to the initial 
spectral structure and its r.m.s. 
amplitude. The calculations accurately 
describe the initial exponential growth 
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The interface separating two 
fluids of different densities is 
unstable if an acceleration is 
applied from the light fluid to 

the heavy. The resulting instability is the 
Rayleigh-Taylor (RT) instability and is a 
dominant phenomenon in the implosion 
phase of Inertial Confinement Fusion, 
where the subsequent turbulent mixing 
dilutes fuel with pusher material, thus 
reducing yield. Rayleigh-Taylor-driven 
turbulence is also an important effect in 
explaining supernova detonations, and 
other high-energy density applications. 
Reliable numerical simulations (NS) of 
the turbulent phase of RT are thus im-
portant to the Validation & Verification 
(V&V) efforts of Advanced Simulation 
and Computing (ASC) codes and to the 
stockpile stewardship program in gen-
eral. 

Hydrodynamic simulations of such high 
energy density phenomena deal with 
multiple physics and as a result repre-
sent the turbulence using low-order mix 
models. In this article, we describe NS 
of RT that will be useful when validat-
ing mix models in the demanding set-
ting of a complex acceleration history. 

Fig. 1.
Nondimensional accel-
eration history (g/g0) 
used in LEM experi-
ments and NS. g0 is the 
earth’s gravity. 
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to nonlinearity, the collapse of 
coherent structures during the 
deceleration phase, the 
subsequent recovery during  
re-acceleration, and the late-
time evolution in to self-
similarity. It is noteworthy that 
our high-resolution NS 
accurately capture the 
shredding of bubbles into small 
scales during deceleration, and 
the associated molecular 
mixing [3]. We conclude that 
initial conditions play a critical 
role in describing RT-driven 
mixing especially under 
nonequilibrium conditions.
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Fig. 2.
Turbulent density field 
images from experi-
ments (left) and NS 
(right) at (a) t = 19.6  ms, 
(b) t = 26.8 ms,  
(c) t = 34.4 ms, and  
(d) t = 65.2 ms.

Fig. 3.
Bubble penetration 
depths hb-scaled to 
the cell size L used in 
LEM runs, from NS and 
experiments vs Z/L 
(Z= ∫dt' ∫dt'' g(t'') cm).


