
Assoc�ate D�rectorate for Theory, Simulat�on, and Computat�on (ADTSC)

Computer Science – Software Design and Verification

A Software Quality Engineering Case Study:
The Jayenne IMC Project Gets a New Mesh Type
Todd Urbatsch, Mike Buksas, Tom Evans, Aimee Hungerford, Scott Mosher,
Chris Fryer, Jeff Densmore, Tim Kelley, CCS-2

Software Quality Engineering
(SQE) is a support activity for
scientific methods and software
development. End-user scientists

sometimes understandably marginalize
SQE, especially when SQE becomes a
field of science or philosophy unto itself.
However, the importance of software
quality cannot be dismissed, especially
when there are examples of experts’
intuition being irreparably misshapen by
bug-ridden software, or when, after decades
and 10s of millions of dollars worth of
development, a large software program is
found to have a bug.

The Jayenne Implicit Monte Carlo (IMC)
Project [1] is a collection of software in the
Computer, Computational, and Statistical
Sciences (CCS) Division that solves the
thermal x-ray transport equations using the
Fleck and Cummings IMC algorithm [2]. An
application of the Jayenne Project software
is shown in Fig. 1, where it is coupled to
hydrodynamics to model the impact of a
hot comet into a granite planet. It is the
design of this software that makes testing
and many SQE practices possible. The single
most important design element is levelized
design in which higher-level objects are
built upon lower-level objects and there
are no cyclic or same-level dependencies.
Thus objects can be unit-tested and built
upon with some confidence. At the top level
of the Jayenne Project software, Milagro
is the radiation-only code, and Wedgehog
is the interface that can be utilized by
application codes. Another design element
is representing the independent variables
of the mathematical equations as template
parameters. For example, a Mesh Type
(MT) template parameter represents the
spatial variable, and any number of MTs
can be built as long as they satisfy the
interface requirements. One MT that the
Jayenne Project lacked was a 3-D continuous

adaptive mesh refinement (AMR) MT. Here,
we describe the testing that went with this
new MT.

One tenet of ours is that testing must be
repeatable and invokable automatically and
on demand. Thus, unit tests are written and
stored alongside the actual software. Unit
tests verify that the software does what it is
required to do. Within each object, or unit,
we make use of Design-by-Contract (DBC)
assertions that test data coming in, being
used, and going out. These DBC statements,
which will stop the code if testing fails,
can be turned on or off at compile time
for either debugging or performance, and
they serve to document the requirements of
the software. Higher-level unit tests verify
ensembles of objects and interfaces. Integral
tests, or highest-level unit tests, allow
verification against analytic mathematical
solutions. “Shunt” tests help verify package
interfaces before they are integrated into
application codes. Regression tests are
simply all these tests monitored over time.
The addition of the new 3-D AMR MT
in the Jayenne Project software had over
300 unit tests and 30 integral tests at the
Milagro level. The impact of the new MT on
Wedgehog is shown in the unified modeling
language (UML) diagram in Fig. 2, where
affected components are shown in red.

A “Buggy Pageant” is a stunt we perform
where we have someone plant bugs in
our software and then we find the bugs
in front of a live audience. One Buggy
Pageant in 2006 pitted us against the most
malicious bugs that Russian scientists
from our sister lab, VNIIEF, could muster.
The average time to find a planted bug is
13.3 minutes. We have since realized that
Buggy Pageants would be just as useful as
routine team activities whenever we add
new capabilities. We performed two Buggy
Pageants for the new 3-D AMR MT and

Nuclear Weapons Highlights 2007 LALP-07-041

helped improve the testing of the MT and,
in the process, educated the entire team in
the new software.

For more information contact Todd
Urbatsch at tmonster@lanl.gov.

[1] T.J. Urbatsch, T.M. Evans, “Milagro Version 2:
An Implicit Monte Carlo Code for Thermal
Radiative Transfer: Capabilities and Usage,”
Los Alamos National Laboratory report
LA-14195-MS (February 2006).
[2] J.A. Fleck and J.D. Cummings, J. Comp. Phys.
8, 313–342 (1971).

Funding Acknowledgements
NNSA’s Advanced Simulation and
Computing (ASC),
Integrated Codes
Program Element,
Transport Project.

Fig. 1.
An application of
the Jayenne Project
software where it is
coupled to hydrody-
namics to model the
impact of a hot comet
into a granite planet.

Fig. 2.
The impact of the new
MT on Wedgehog in the
UML diagram, where
affected components
are shown in red.

