Computer Science — Libraries and Tools

Scientific Application Development using Eclipse and

the Parallel Tools Platform

Greg Watson, Craig E. Rasmussen, CCS-1

cientific application developers

face many problems in today’s

parallel computing environments.

Despite the perception that there
are few tools supporting high-performance
computing, the opposite is in fact true.
Unfortunately, the tools are often difficult
to use, support only a few platforms, and
in many cases, are incompatible with each
other.

An integrated development environment
(IDE) is generally considered best practice in
the majority of the (nonscientific) software
development industry. Eclipse is an open-
source IDE that provides a portable, robust,
commercial quality environment for a wide
range of software development activities.

It supports multiple languages, including
Java, C, C++, and Fortran, provides a
syntax-aware editor, code refactoring,
incremental code compilation, source-level
debugging, and integrated support for
source control systems such as CVS and
Subversion.

To assist scientific application developers

to improve their productivity, we created
the Eclipse Parallel Tools Platform (PTP)
project (http:/ /eclipse.org/ptp). The aim

of this project is to establish a common and
portable IDE across a wide range of parallel
computing platforms. An important aspect
of PTP is that it remains agnostic to the tools
actually deployed on the machines, such as
compilers, linkers, job schedulers, runtime
systems, and performance analysis tools.
This ensures portability of the platform, and
also provides a tool integration framework
that allows the individual tools to share data
and functionality.

In addition to the standard features
supported by the Eclipse platform, PTP
adds a range of functionality that enhances
the ability of software engineers to develop
codes for parallel machines. These features
include:

Tools to aid MPI and OpenMP
programmers.

PTP includes tools that simplify the
development of MPI and OpenMP programs
by providing special content assistance and
context-sensitive help. In addition, the tools
provide static analysis features that provide
advanced error checking and analysis of
parallel programming constructs.

The ability to monitor and control parallel
jobs.

PTP adds support for monitoring the status
of a parallel computer system (such as
which nodes are available, etc.) and launch
parallel jobs onto the system. Figure 1 shows
the Eclipse view of a parallel machine. The
status and output from processes of the

job can be monitored, and the job can be
terminated if necessary. Recent work has
added support for submitting jobs though
job-scheduling systems such as LSF and
MOAB.

The ability to debug parallel programs.
PTP adds an integrated, scalable, parallel
debugger to the IDE. The debugger is
launched with the click of a button, and
provides the ability to control many
processes simultaneously. Figure 2 shows
a typical debug session. It supports
traditional debugging commands, such as
breakpoints, viewing variables, etc., as well
as some innovative functions for dealing
with multiple processes. The debugger

is designed to scale to jobs with many
thousands of processes.

For more information contact Craig E.
Rasmussen at rasmussn@lanl.gov.

Funding Acknowledgements
NNSA’s Advanced Simulation and
Computing (ASC).

Associate Directorate for Theory, Simulation, and Computation (ADTSC)

File Edit Refactor Mavigate Search Project Run Window Help

e Qv Qv |2 | F | Sv D T HEPTPDebug (2 C/C++ | EBE PTP Runtime

885 Machines 51 = O || 888 Jobs 52T B o'y Ff 3 &+ T O||lg cak_pic b2_pmcessd X =8

machine0 - Root [250] o~ {? = @ job3 - Root [54] | Process deails
| [@eb2 IR AR AR T A

e T i R T T I | s i 0 e
1"“ KPPIIPIIIPP FID: 32571 Job: 2
T o s s o ee || s

T pO9999904Q | | [Errr

se [l 0 [[l [l) [l [1| &0 (@l (9| 19| (& DPPPIPIIP Process 0 on nd =
neEEsEEsessslss e BPIPIIPIPYP piis appioximately 3.1416009855231249, Enor is 0.00000833333333 18
) “PPPPIIIP wallchcktime =007 ™y 7™y ™y \ Legend

=B e e ee Node Calars

12569 [¢] 91 [0 @l ¢ @ ¢ @ & @1 [0 @ oom
npbbbbbbbbbbbos -

10 [(O (9] 9] (9] |9 (&) (9] [¢] &1 (&) (5] 1 &1 & ALLOCATED TO YOU EXCLUSIVELY, BUTIDLE
15422333333332221 @ ALLOCATED TO YOU SHARED, BUT IDLE

168 O] 9] (@] (][9] (9] [&] [[&] (@] (3] [9] 9] :,Z '
18222113223332222 2 ALLOCATED TO SOMEONE ELSE EXCLUSIVELY
196 [19 19 [[1@ @ [& 1@ @] ¢l 1$ & i ALLOCATED TO SOMEONE ELSE SHARED

20 (9] (9] (@] [9] (9] (@] [&] [[&] [[9] (@] [&] |9 e

z4 (9] (O] (0] [9] (9] (O] [&] [S] [&] (][9] [@] [&] |9 4] J2B ST

=3 ol o oo Ml He a ERROR

k| UNKNOWM / UNDEFINED
= Pmcess Colors

Node Info Pmcess Info - SLANIRS

Node# 0 ¥ Process 0, Job 2 L d RUNNING

Name ¥} ’ Piocess0, Job 3 & EXITED NORMALLY

State up -*5 EXITED WITH SIGNAL

User mat E ¥ STOPPED

Group mat ﬁ ERRCR |

[«T -~] =] tl
Rank: 0 nning ez r/A

Fig. 1.

PTP runtime views showing the node status of a parallel machine (left side) and the process status of a running
parallel job (middle). The output from a process, along with a legend showing the different node and process
states is also displayed (right side.)

File Edit Refactor Mavigale Seach Pmject Run Window Help

e Qv Qv | = Ye Dw [[E2PTP Debug | [c/Ce+ E3E PTP Runtime
% Pamllel Debug 52 o @ B O i | & T T 0| Brakpoint Anay View Expressions =0
b2-RUUl[6=1] - LB R R e
I3 b2] E L @ L A e A A A e e A A A e A A E
Dy v F FFFFFF T F TV T T T EFFTF
Wy P ¥FFFFFEEEEFFEETETETErrErrr || @ numprocs =54 —
[A @1=0
. Y E LT % PI25DT=3.141502553585793
W n @ | o
5 Debug 52 i3 PP R | 22 8 BB @ mpl=00
= a-ftest (54) |Pamllel Application] & pi=00 —
- - =
12 Piocess 0 (Suspended) @ h=00
7 4 Thiead [0] (Suspended) & um=00
= 0 main()atcak_pic32 n =1
= 1 Piocess 4 (Suspended) [-]
= 4 Thread [0] (Suspended) [
= 0 main()atcak_plc37 ? + [»]
gl cak_pic 32 = 8 5= oudine 32 =8
ME1_LET_Processor_Ndme | processor_Name, Sname Len)| -
B B R e ¥
fprintf(stderr, "Process %d on %s\n", myid, processor_name); = mpih
n=0; = stdioh
] \{Mlule (1done) 1 math.h
if (myid = 0) L
! o i
» if (n==0) n=100; else n=0;
4@ main
startwtime = MPI_Wrime();
}
% MPI_Bcast(&n, 1, MPI_INT, ©, MPI_COMM_WORLD);
if (n==0)
dene = 1
e
!
[¢] B
: 4
Fig. 2.

A typical parallel debug session showing the parallel job and associated process status (top left). Directly underneath
is a more detailed view of stack frame information from some of the processes being debugged. The program source

code and markers indicating breakpoints and current execution locations are displayed (bottom left).
Information about the values of variables in one of the processes is also shown (top right.) Lo Alamos

NATIONAL LABORATORY
EsT.10a3

Nuclear Weapons Highlights 2007 LALP-07-041

