
Assoc�ate D�rectorate for Theory, Simulat�on, and Computat�on (ADTSC)

Computer Science – Computational Architecture Exploration

Exploring Solutions to ASC Simulation Code
Input/Output Issues
Steve Hodson, James Nunez, HPC-5

There is a conflict between the Los
Alamos National Laboratory
Advanced Simulation and
Computing (ASC) simulation

codes and the supercomputers on which
they run. The codes can run anywhere from
weeks to months to years, yet the computer
systems rarely stay up for this amount of
time. One method for the simulations
running to make progress is for the codes to
periodically write files to storage that have
all the information in them to restart the
run. The stored files are called restart, or
checkpoint, files. Normally, each process
writes all characteristics for all elements for
which it is responsible to a single file. Thus,
if a machine goes down, the code can restart
close to the place where it stopped with the
use of the information in the checkpoint file.
In this manner, days, weeks, or months of
work are not lost. Since the checkpoint files
can be very large, on the order of gigabytes
to terabytes, the time to write a checkpoint
file is anywhere from seconds to tens of
minutes, and the user must balance this cost
against the mean time to interrupt (MTTI) of
the machine to figure out how often to write
a checkpoint file. In addition, the MTTI will
vary by machine, maturity of machine, by
the size of the job, and the checkpoint time
will depend on the application.

Unfortunately, the manner in which many
codes write checkpoint files is with very
small writes, on the order of tens to a few
hundred kilobytes, and the writes are
normally not aligned on page boundaries.
Not only do they write in this small and
unaligned manner, but all processes write to
one portion of a single file at one time, i.e.,
the writes are strided. The codes have a
variety of good reasons to write in this
manner; it being the simplest way to restart
a job from N processors to M processors,
and a friendly format for visualization.

Since the simulations cannot afford to lose
data, most file systems employ a reliability
scheme called RAID 5 that can rebuild data
in the event of a failed disk drive by keeping
the parity of data stored across all drives.
Due to this reliability and the code’s I/O
(input/output) patterns, every write to disk
is possibly a fetch-on-write or read the
blocks on disk, update these blocks with the
new data, and write to disk and thus is more
time consuming. For this reason the HPC-5
File System team explored the benefits and
risks of a nonparity-based reliability
scheme.

With real application in hand, the file
system team, including the authors, tested
a variety of I/O techniques to speed up
the write time for real applications. Steve
Hodson brought a deep understanding of
the underlying physics of the applications
to the team, and James Nunez brought
an understanding of I/O middleware
and file systems. The first step in eroding
the decade-long problem of slow write
bandwidth due to small unaligned I/O,
was to analyze the I/O patterns of the
application. Analyzing the application’s
I/O patterns entailed instrumenting the I/O
routines and coming up with a profile for
a typical run. With that analysis, potential
areas that would impact the application’s
time for writing checkpoint files were
found. The initial problem the authors were
given was a code that was getting 1 MB/s of
write bandwidth, which is intolerably slow.
The analysis showed that all processes were
writing to a small region of a single file with
very small blocks of data. The team did a
study of the impact of data aggregation at
the middleware (MPI-IO) level; i.e., sending
data to a small number of processes and
having only that subset write to the file.
This study confirmed previous results that
having many writers can actually slow I/O

Nuclear Weapons Highlights 2007 LALP-07-041

rates. Reducing the number of writers led
to a 20-time improvement in bandwidth;
to 20 MB/s. Due to rigorous testing and
parameter studies, the data aggregation
parameters were made the default in
Los Alamos Message Passing Interface
(LA-MPI) on all production machines.

Even this improved data rate was
unacceptable. So Steve continued to search
for ways to improve the application’s I/O
rates. In conjunction with testing James was
doing, they realized that their bandwidth
results for very similar tests were not
matching. An analysis of the differences in
their testing showed that they were using
different versions of MPI, MPICH vs
LA-MPI, which led to the discovery that
LA-MPI had a very inefficient imple-
mentation of a subroutine that was called
hundreds of times by the I/O routines.
Once the LA-MPI team optimized the I/O
subroutine, the application’s write rate
increased to approximately 50 MB/s.

Next, Steve undertook the job of activating
asynchronous I/O in MPI and a study of
how this would affect the application’s I/O
rates. Although the work with asynchronous
I/O helped the bandwidth, it was clear that
there were other factors impeding the I/O
performance.

With help from the file system vendor
Panasas, the team tested a nonparity-
based file layout called RAID0. The
team conducted a study of collective,
independent
synchronous,
and independent
asynchronous I/O
against the alternate
file layouts. The
study concluded
that the RAID0
layout alone helps
the application,
but combined with

asynchronous independent I/O (Fig. 1), the
application can achieve over 450 MB/s!

The next step for this team is to work with
Panasas to bring a nonparity-based reliable
file layout into its product and into the
Laboratory. This work has already begun,
and testing on a RAID 10, mirror and stripe
data across multiple disks scheme, already
looks promising.

Conclusion
Through persistence, experimentation, and
methodical testing, significant progress
has been made toward understanding
and solving the small and unaligned I/O
problem that plagues many of ASC major
codes. The File System team was able
to demonstrate an average of 350 times
improvement in write bandwidth for a
major code team.

For more information contact Stephen
Hodson at swh@lanl.gov.

Funding Acknowledgements
This research was supported by the NNSA
tri-Lab Advanced Simulation and
Computing Program.

Fig. 1.
The top turquoise line
shows the dramatic
improvement in speed
of the application
write time on a super-
computer when RAID0
is used in combination
with a specific I/O
method.

