
Assoc�ate D�rectorate for Theory, Simulat�on, and Computat�on (ADTSC)

Computer Science – Computational Architecture Exploration

A Novel Single Projection Method to Calculate View Factors
for Radiosity, and a GPU-Based Implementation in a
Large Multiphysics Code
Sriram Swaminarayan, John Turner, CCS-2

We describe a new method
for calculating view
factors for radiosity
using a single Cartesian

projection, and its implementation on
graphics hardware to accelerate heat
transfer in Truchas, a large multiphysics
flow and solidification code developed
at Los Alamos National Laboratory. By
utilizing the hardware accelerated
z-buffer of the Graphical Processing
Unit (GPU) we are able to achieve
speedups of the order of 30 times in the
view factor calculation.

Algorithm
Our single projection method is similar
to the Hemicube method [1] in that we
do Cartesian projections, but is more
efficient since instead of five projections,
we only project onto a single plane. This
requires modification of the original
hemicube equations to explicitly include
the distance to the imaging plane as
follows:

 					

					 (1)
where dF is the contribution to the
view factor matrix by any pixel on the
imaging plane, zo is the height of the
imaging plane from the center of the
face of interest, Δ is the size of the pixel,
and r is the radial distance to the pixel
from the z-axis.

As is evident from Eq. 1, the pixels
closest to the z-axis will contribute the
most to the view factor matrix (inverse
dependence on r4). Consequently, we
use a finer mesh closer to the center

of the imaging plane and a coarser
mesh further away. On the GPU this is
achieved by simply changing the field
of view while keeping the window size
fixed. This allows us to achieve high
accuracy in the view factor calculation
where it is needed most without
sacrificing speed. Figure 1 demonstrates
this for a geometry of concentric spheres
where three levels of refinement have
been used to calculate view factors. The
faces are colored by their IDs and the
contents of this buffer are read back
onto the CPU to combine contributions
into the overall view factor matrix. A
significant advantage of our method is
that we can selectively refine the view
factor matrix along directions that need
the high resolution due to increased
detail in that direction, while at the
same time keeping the mesh coarse in
other areas.

Implementation
To interface the GPU code into Truchas,
which is written in modern Fortran
(F90), required a platform-independent
library for generating windows and
drawing to them using OpenGL. We
decided against using OpenGL Utility
Toolkit (GLUT) for this since it does
not give the application control over
the event loop, and it was not easy to
recast the F90 code in such a way that
it could be called from the display
routine of GLUT. We instead wrote a
simple library that opens a window
on the client machine, and draws to
it with the geometry given. This way,
the physics code itself has no graphics
code embedded in it and we can easily
eliminate the GPU-based extensions

Nuclear Weapons Highlights 2007 LALP-07-041

when building on machines without
powerful GPUs.

Results
Figure 2 shows the times for calculating
the view factor using the Hemicube
method on a 3.4 GHz 64-bit Xeon and
using the plane projection method on
an NVIDIA Quadro FX1400 GPU for
a problem containing two concentric
spheres. For any given problem size, the
GPU implementation is at least 30 times
faster than the CPU for a comparable
resolution.

For more information contact Sriram
Swaminarayan at sriram@lanl.gov.

[1] M.F. Cohen, D.P. Greenberg, “Hemi-Cube: A
Radiosity Solution For Complex Environments,”
Comp. Graphics 19, 3 (1985).

Funding Acknowledgements
NNSA’s Advanced Simulation and
Computing (ASC), Telluride Project;
and Laboratory Directed Research and
Development.

Fig. 1.
Snapshot of one face
of the view factor cal-
culation. The faces are
colored by their IDs.
The frame buffer is read
back and the sum of the
contributions of each
face is used to calcu-
late the view factors
for that face. The three
panes in the image
represent three fields of
view used in obtaining
this image.

Fig. 2.
Time taken for the
Hemicube on the CPU
and the plane projec-
tion method on the
GPU. The GPU com-
putes the view factors
at least 30 times faster
than the CPU.

