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SUPERFLUID ORIFICE PULSE TVUBEY
REFRIGERATOR BELOW 1 KELVIN
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Los Alamos National Laboratory, Los Alamos NM 87545

ABSTRACT

Half the moving parts of the superfluid Stirling refrigerator have been eliminated
by adopting an orifice-pulse-tube configuration. Our first such device has cooled to
0.64 K with the hot platform anchored at 1.0 K. Performance of the refrigerator is in
reasonable agreement with expectations. Two curious features of the superfluid pulse
tube are in distinct contrast with features of conventional pulse tubes. First, stability
of the 3He-*He mixture against free convection requires that the hot end of the pulse
tube must be below the cold end. Second, the low heat capacity of metals below 1 K
makes heat loss along the pulse tube due to the fluid’s oscillatory motion very small.

INTRODUCTION

The superfluid Stirling refrigerator? uses the *He in a *He/4He mixture as a ther-
modynamic working fluid. Bellows-sealed superleak g)istons work only on the 3He,
carrying it through a Stirling refrigeration cycle. The “He behaves approximately like
an ideal gas; the ‘He passes freely through the superleaks, and has little effect on the
thermodynamics of the cycle. '

In the Stirling refrigeration cycle®* , the phasing of the cold piston’s motion relative
to the oscillating pressure is such that the cold piston absorbs work from the working
fluid while the pressure is high, and returns work to the working fluid while the pressure
is low; the net effect (averaged over each cycle) is that the cold piston removes work
from the fluid. As shown in Fig. 1, in orifice pulse tube refrigerators® the cold piston of
the Stirling refrigerator is replaced by a passive, dissipative structure which maintains
this phasmg between fluid flow and pressure in the vicinity of the cold heat exchanger,
but_ with no moving parts. The “orifice” is a resistive flow impedance, which passes
oscillatory fluid flow in phase with the oscillatory pressure. Work is thereby removed
from the fluid, and dissipated into heat; a heat exchanger near the orifice is thermally
anchored to the hot temperature of the refrigerator to dispose of this heat. The “pulse
tube” is a simple tube full of the working fluid, connecting the cold heat exchanger
to the orifice. It thermally isolates the orifice’s dissipation from the cold end, while
transmitting fluid motion. In other words, the fluid in the pulse tube can be imagined
~ as a sort of long, thermally insulating piston. The cold end of this imaginary piston,
in the vicinity of the cold heat exchanger, mimics the former cold piston of the Stirling
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Fig. 1. Schematics of (a) Stirling cycle refrigerator, and (b) orifice pulse tube refrigerator, in which
the cold piston of the Stirling cycle refrigerator is replaced by passive components.

refrigerator; the hot end of the imaginary piston delivers net work to the orifice.

In principle, orifice pulse tube refrigerators are less efficient than Stirling refrigera-
tors: Mechanical work is dissipated into heat in the orifice of the pulse tube refrigerator,
whereas it is efficiently recovered at the cold piston of the Stirling machine; and the
effective thermal conductance of the pulse tube often puts a greater thermal load on
the cold heat exchanger than does the heat generated by friction and other losses at the
cold piston in the Stirling refrigerator. The lack of cold moving parts is a significant ad-
vantage, however, which may outweigh the lower efficiency for some applications. These
considerations led us to undertake the work reported here, to explore the application
of orifice pulse tube technology to the superfluid Stirling refrigerator. As discussed be-
low, we modified our existing refrigerator, replacing the cold pistons with the simplest
possible orifice pulse tube components, and operated it with a 17% mixture. The basic
operation of the system is understandable, but a quantitatively accurate understand-
ing will require better knowledge of the thermophysical properties of the mixture. For
simplicity, numerical estimates of performance presented here will model the 3He in the
mixture using the equation of state and specific heat of a classical ideal gas, and with
thermal conductivity K ~ 0.03 W/m-K and viscosity u ~ 1.5 x 1076 kg/s-m.

Gravity plays an important role in our pulse tube, both with respect to ordinary
convection and by flattening the oscillatory flow profile. Hence ground-based testing
will not generally be relevant to the performance of a superfluid pulse-tube refrigerator
in zero gravity; a more conventional Stirling configuration of the superfluid Stirling
refrigerator may entail less risk for satellite-based applications.

APPARATUS

Our unmodified superfluid Stirling refrigerator, described elsewhere? in this vol-
ume, essentially comprised two simple Stirling refrigerators as illustrated in Fig. 1a
operating thermally in parallel and temporally 180° out of phase from each other. A
counterflow heat exchanger served as regenerator, so that the fluid in each of the two
refrigerators regenerated that in the other, without need of the usual solid heat capacity.

To convert this apparatus into an orifice pulse tube refrigerator, we removed the
two cold pistons, replacing them with two pulse tubes and an orifice as shown in Fig. 2.
Because pf the 180° temporal phase shift between the two halves of the refrigerator, a
single orifice linking the hot ends of the two pulse tubes was used, so that each pulse
tube served as the “tank” (cf. Fig. 1b) of the other pulse tube. The heat exchangers
at the hqt ends of the pulse tubes were thermally anchored to the hot platform.

.Ch01cg: of dimensions of the pulse tubes was a rough compromise among several
considerations. The total fluid volume in the pulse tube should be significantly larger
than fche volumetric displacement through the pulse tube, so that the “imaginary pis-
ton” is not swept entirely out of the pulse tube during operation. The peak-to-peak
volumetric displacement of each of our hot pistons was 2V; < 2 cm?, so we expected vol-
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Fig. 2. Schematic of the superfluid orifice pulse tube refrigerator. Pressure sensors are indicated by
“p”; thermometers by “T”.

umetric displacements in the pulse tubes to be somewhat smaller than that. However,
if the pulse tube volume is too large, the pressure amplitude is reduced significantly for
a given piston stroke. Erroneously, we had believed that the pulse tube diameter should
be significantly larger than the mixture’s viscous penetration depth 6, = (u/7f=*p)!/2
(where f is operating frequency, p is mass of 3He per unit volume, and m* and m are
the effective mass and true mass of a 3He atom), so the “imaginary piston” could move
with a velocity that is essentially independent of radial location within the pulse tube.
(This consideration will be discussed more fully in the “Gravity” section below.) For
the operating frequencies accessible with our drive motor (4 mHz < f < 50 mHz),
0.5 mm < 6, < 1.6 mm. The area-to-length ratio of the pulse tube should not be too
large, lest ordinary heat conduction along the “imaginary piston” be excessive. Finally,
we were constrained by the available space at the bottom of our cryostat. We chose
pulse tube inner diameter 6.0 mm and length 7.0 cm, so that the fluid volume in each
pulse tube was 2.0 cm3. The tubes were CuNi with 150 um thick walls.

Copper screens (60 mesh/inch) at each end of each pulse tube served as flow



straighteners, to prevent possible jetting of fluid entering from the hgaat exchangers or
3 mm diam connecting tubes, in which the Reynolds number was ~ 10°. The connecting
tubes contributed 0.7 cm® to the volume of fluid in each half of the refrigerator.

Research orifice pulse tube refrigerators usually use needle valves as orifices so
that the impedance can be varied widely during the course of an experiment. For our
superfluid orifice pulse tube refrigerator, with small displaced volume and low frequency,
the required impedance seemed far higher than the range of commonly available valves.
Hence we used a fixed impedance, arrived at by trial and error. It consisted of 16
capillary tubes in parallel, with wires inserted to block most of the area. Each tube was
30 mm long, approximately 0.2 mm inner diameter, with 0.15 mm diameter wire. The
Mach number (based on second-sound speed) of the flow in this impedance was ~ 0.01;
the Reynolds number was ~ 10.

Each of the hot heat exchangers between the orifice and the pulse tubes was simply
four holes (0.8 mm diam, 1 cm long) drilled through a copper block. These blocks were
bolted to copper bars, which were in turn bolted to the hot platform. -

Thermometers and heaters on the hot and cold platforms allowed measurement
of temperatures T and cooling power Q, and regulation at constant temperature when
desired. Piston volumetric displacement V was measured with a variable differential
transformer, and oscillatory pressure p was measured with flexible diaphragm sensors.
These measurements were automated with a personal computer, so that cycle-averaged
work W = § pdV and average power W = fW could be computed easily. More details
on these sensors may be found elsewhere.?

GROSS COOLING POWER

To investigate basic operation of the refrigerator under simple conditions, we regu-
lated the cold platform temperature T¢ to be equal to the hot platform temperature T,
so that temperature was essentially uniform throughout the apparatus, and measured
V(t), p(t), and Q as functions of f. The results, shown in Fig. 3, can be understood
qualitatively by considering a simple model: an oscillating volume V'(t) = Vp—V; cos(wt)
of gas, weakly linked by a resistive impedance R to a location of constant pressure pg.
(For our dual refrigerator, this location is the midpoint of the orifice.) Viscous pressure
drops within V' are negligible, so that p(t) is spatially uniform. The mass of gas in the
volume is proportional to pV; the rate of change of mass in the volume is —(p — pp)/R.
Hence the differential equation describing the system is d(pV')/dt = —(p— POS /R. Using
p(t) = po+Re[p€**] and V(t) as given above, we find

n__ W ir_ Po ;1
po 1+ 1/iwRV, and W_z_E;TO (1)

We can easily estimate the parameters in these equations. First, we use pg = 370
torr, the pressure of a classical ideal gas at 1 K with number density equal to that of
a 17% mixture. Second, we use V, = 5.0 cm?®. The geometrical volume of fluid in each
half of the refn_gerator is 6.7 cm®. However, V; is somewhat smaller than this, because
most of the fluid volume experiences nearly adiabatic pressure oscillations, and hence
is stiffer (by a factor 7 ~ 5/3) than we assumed in the isothermal derivation above.
Our value of V; is based on the estimate that 40% of our geometry should be treated as
isothermal and 60% as adiabatic. Finally, we obtain R = 2.2 s/cm® from the measured
11 s relaxation time of pressure following an abrupt change in piston position.

Using this value of R, the length and number of capillaries, the wire diameters,
and the viscosity of the mixture, we estimate that the annular gap between wires and
capillaries in the oriﬁce.is 7 pum. This is the correct order of magnitude, but a little
smaller than would be inferred from the geometry of the capillaries and wires. The
flow velocities are of order 10 times the critical velocity for pure “He in this geometry;
perhapg superfluid turbulence plays a significant role in the behavior of the impedance.

_With these values for po, Vo, and R, Egs. (1) then yield the lines in Fig. 3, which
are in qualitative agreement with the experimental results for the magnitude and phase
of p; and for W. (According to Radebaugh’s tables® for the equation of state, most
of the difference between the lines and the measurements is due to our use of the ideal
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Fig. 3. Amplitude and phase of oscillatory pressure, and cooling power and piston power, vs drive
frequency, for Tc = Ty = 1.0 K and V; = 0.56 cm®. Here, p; is the complex amplitude of the
pressure difference between the two halves of our refrigerator, and the powers are the sum of those
for the two halves, so appropriate factors of 2 have been used relative to Egs. (1).

gas approximation; but we hesitate to use his values or any others because of the lack
of experimental data on osmotic pressure in this concentration range.)

‘For small regenerator volume and T = Ty, the volumetric flow rates at the two
ends of the regenerator are equal. The work fluxes at the two ends of the regenerator
are also equal, because p(t) is spatially uniform. The enthalpy flux through an ideal
gas in a perfect regenerator is zero, so the cooling power must equal the time-averaged
work flux at the cold end. Hence under these conditions we expect Q = W. At low and
mid frequencies, the data agree with this expectation. . )

We do not fully understand the observed increase of W and decrease of @) at the
highest frequencies. Plausible explanations, in rough agreement with the measurements,
include’ irreversible oscillatory pressure in fluid that is neither isothermal nor adiabatic
and nonlinear flow in the impedance.

EFFECTS OF GRAVITY IN THE PULSE TUBE

Initially, we made the mistake of orienting the cold end of the pulse tubes down,
following conventional pulse tube refrigerator practice for stability against gravitational
convection. With this arrangement, we could not cool below T¢c = 0.95T). Stability
against convection in *He-*He mixtures requires that the cold end be up, because the
total (3He + “He) mass density is lower at the cold end, where the He density is higher.
To be consistent with our use of the classical ideal gas equation of state for the 3He, we
estimate the effective thermal expansion coefficient f,,,, for purposes of gravitational
convection by assuming that the total number density in our mixture of mass-3 and
mass-4 atoms is constant, independent of temperature and 3He concentration. Then
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Fig. 4. Powers vs T¢, with Ty = 1.0 K and f = 12.5 mHz. Circles are m_easured cooling power and
mechanical power with V; = 0.56 cm®. Triangles are scaled measured cooling power under similar
conditions? for conventional Stirling configuration. Dashed line is expected gross cooling power.

it is easy to show that T = —1/3, a third the magnitude and of opposite sign
compared to a classical ideal gas. This value is close to tabulations® based on a much
more complete treatment® in the context of Rayleigh-Bénard convection.

All the measurements presented here have the cold end of the pulse tubes up (as
shown in Fig. 2). Figure 4 shows typical measurements of cooling power as a function
of Te, with T maintained at 1 K. The “cooling power” for Tc > Ty shows a dramatic
increase, which we attribute to gravitational convection. For the hottest datum, the
Rayleigh number in the pulse tube is of order 106.

Gravity also has a profound effect on the oscillatory motion. Consider the z com-
ponent of the equation of motion of the fluid in the pulse tube:

(m*/m)p[0u/bt + (v - V) u] = —8p/dz + pV?u + pger, (2)

where z is directed along the axis of the pulse tube, and is positive downwards, and
gef = —g/3 with g the ordinary acceleration of gravity. For small, oscillatory motion,
u — Relu;(r)e™*] and p — p + Re[p;e“?], so that Eq. (2) reduces to :

w(m® /m)pu; = —0p1/0z + pV2u; + p1ges. )

Usually the gravitational term can be neglected. Then the scale of the distance
near the walls over which u; changes from 0 to its free-stream value is determined by
the ratio of the viscous and inertial terms, which yields the (square of the) viscous
penetration depth §, alluded to in the introduction. In contrast, in the superfluid puise
tube, we cannot negfect g- The oscillatory displacement of the fluid with its temperature
gradient, along the temperature gradient, causes temperature oscillations, contributing
a spatially dependent p;(r) proportional to u;(r). (Density oscillations p; also arise
from pressure oscillations, but these are spatially uniform and so have no effect on the
shape of u;). Then Eq. (3) becomes

w(m* /m)pus = ~8p1/8z + puV>u1 — (pge/T)Th. (4)
with T; given by the first-order temperature equation

pcp liwTy + V. Tuy] = KV*T, (5)

(again neglecting a spatially uniform term due to pressure oscillations). Combining
Eqgs. (4) al_ld (5) by eliminating T} produces a 4th order differential equation in u,
whose spatial dependence is governed by an effective viscous penetration depth Opefi
given in the low-frequency limit by

6;1‘@“ = ézsz/ 40 |gesi| VT, (6)
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Fig. 5. Cooling power and mechanical power vs piston stroke, with Ty = 1 K, Tc = 0.9 K, at two
different frequencies. Here, we normalize the peak-to-peak piston stroke 2V} by the pulse tube
volume Vs = 2.0 cm®, the volume of fluid between the flow straighteners in the pulse tube.

where the Prandt] number o = uc,/K. This effective viscous penetration depth gives
the scale of the distance near the walls over which u; changes from 0 to its free-stream
value in our pulse tube. For values appropriate to the data shown in Fig. 4, §, = 0.9 mm

er¥of¥and §, . = 0.1 mm: Gravity flattens the velocity profiles dramatica.llg'. We believe this
i T

effectis gake in conventional pulse tubes (g.g — g) only when w?*T/40g V. T < 1.
Typical pulse tubes are ~ 10 cm long and have Ty — Tc ~ T, implying f < 3 Hz.

Some indirect evidence of this flattening is shown in Fig. 5, which displays cooling
power as a function of piston stroke. We expect that the “imaginary piston” in the
pulse tube would disappear for large enough piston strokes, because it would be swept
entirely out of the pulse tube as the fluid oscillates, dramatically destroying its thermally
insulating quality. The diameter of the “imaginary piston” is approximately equal to
the pulse tube diameter minus twice the thickness of the fluid layer held motionless near
the pulse tube walls by viscosity'? ; if gravity could be neglected, this layer would have
thickness 6, but the effects of gravity reduce its thickness to 6, .. The vertical dashed
line in Fig. 5 shows, for f = 3.3 mHz, the piston stroke above which the imaginary
piston would disappear if §, were the appropriate thickness; the vertical solid line shows
the location of this expected transition for 6, .s the appropriate thickness. (For f =
12.5 mHz, the corresponding lines would be at (2V;/V,)? = 1.6 and 2.2, respectively.)
The measurements are consistent with the §, . interpretation (with a heat leak of the
order of 10 uW that does not increase dramatically with stroke).

This flattening of the velocity profile increases the viscous dissipation in the pulse
tube, because it steepens the velocity gradient near the wall. We estimate this dissipa-
tion to be < 1 uW for the conditions of Fig. 4; it varies as V2 f%/2.

The flattening of the velocity profile also helps make this an essentially ideal pulse
tube. The small value of 6, s compared to the pulse tube diameter makes the “imagi-
nary piston” picture reasonably accurate. The heat capacity in the metal tube wall and
the heat capacity in the stationary fluid layer adjacent to the wall are small compared
to the heat capacity within the first thermal penetration depth in the moving fluid, so
negligible heat is transferred laterally to and from the moving fluid; hence shuttle heat
loss is small. The strong stability enforced by gravity and the temperature gradient
may suppress streaming-driven convective mixing as well. This leaves ordinary thermal
conduction in the z direction as the only significant loss mechanism in this pulse tube.



PULSE TUBE THERMAL LOSS

In the Gross Cooling Power section above, we argued that Q =W when Te = Th.
For unequal temperatures, the measured cooling power Q will be reduced by heat
loads to the cold heat exchanger through the regenerator and pulse tube, due both
to ordinary conduction and to convection driven by the oscillatory fluid motion. Let
us call the cooling power if such heat loads were absent the gross cooling power. For
small regenerator volume, the ratio of the volumetric flow rates at the two ends of the
regenerator must equal Tc/Ty. Then the ratio of work fluxes at the two ends of the
regenerator also equals T¢ /Ty, because p(t) is spatially uniform. The enthalpy flux
through an ideal gas in a perfect regenerator is zero, so the gross cooling power must
equal the time-averaged work flux at the cold end. Hence under these conditions we
expect the gross cooling power to be W T¢/Ty, where W is the work flux at the hot
end, as before. The dashed line in Fig. 4 is this expected gross cooling power.

The difference between the gross and observed cooling powers is the sum of the
heat loads due to the regenerator and pulse tube. To estimate what fraction is due to
the regenerator, we display in Fig. 4 data taken before? we replaced the cold pistons
with the pulse tubes, for the same 3He concentration and operating frequency. (To
account as well as possible for the slightly different piston stroke used in the earlier
data, we multiplied the earlier cooling powers by 0.85 to bring the observed Tec =Ty
cooling powers, and hence the gross cooling powers, into agreement.) These data fall
much closer to the gross cooling power line than do the data for the pulse tube system,
suggesting that the heat load on this system is largely due to the pulse tubes. The data
are in rough agreement with our estimate (from geometry and the thermal conductiv-
ity of the mixture) that ordinary conduction through.the pulse tubes should deliver
(50 uW/K)(Ty — Tc). Although many pulse tubes suffer from substantial thermal loss
due to streaming- or turbulence-driven mixing, there is no evidence of such loss here.

By using longer, thinner pulse tubes, it will be simple to reduce pulse tube losses
by an order of magnitude in future superfluid orifice pulse tube refrigerators, while still
keeping 6, ¢ much smaller than the pulse tube diameter and keeping viscous dissipation
within 6, . acceptably low. Hence, we expect that a ground-based superfluid pulse tube
refrigerator can perform nearly as well as a superfluid Stirling refrigerator, except for
the added heat loads imposed on the heat sink at Ty by the orifice dissipation.
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