Skip to Content Skip to Search Skip to Utility Navigation Skip to Top Navigation Skip to Content Navigation
Los Alamos National Laboratory
Los Alamos National Laboratory links to site home page
Delivering science and technology to protect our nation and promote world stability
LANL

Probing metal solidification nondestructively

This is the first time that high-energy protons have been used to nondestructively image a large metal sample during melting and solidification.
April 11, 2014
An x-ray image of a 200 micron thick aluminum-14 atomic percent copper alloy during directional solidification, highlighting the growth of an aluminum-rich branched structure (dendrite) and the advancing solid-liquid (planar) interface. The advancing lamellar eutectic solid consists of two different phases.

An x-ray image of a 200 micron thick aluminum-14 atomic percent copper alloy during directional solidification, highlighting the growth of an aluminum-rich branched structure (dendrite) and the advancing solid-liquid (planar) interface. The advancing lamellar eutectic solid consists of two different phases.

Such real-time imaging could provide the insight needed to control the microstructure of metals and lead to advanced manufacturing processes to produce materials with desired properties.

Los Alamos researchers and collaborators have used nondestructive imaging techniques to study the solidification of metal alloy samples. The team used complementary methods of proton radiography at the Los Alamos Neutron Science Center (LANSCE) and synchrotron x-ray radiography at Argonne National Laboratory (ANL) to make the measurements. This is the first time that high-energy protons have been used to nondestructively image a large metal sample during melting and solidification. Understanding the link between processing and structure is important because structure profoundly affects the properties and performance of engineering materials. Such real-time imaging could provide the insight needed to control the microstructure of metals and lead to advanced manufacturing processes to produce materials with desired properties. Scientific Reports published the research.

Significance of the research

A metallic alloy solidifies over a range of temperatures and compositions. Historically, methods to design metal castings incorporated experimental trials in which researchers made castings and then cut up and polished the resulting parts to see the structure and to infer how processing influenced the material. Direct observations of metallic alloy solidification have been limited.

Scientists now can peer into a metal during processing without destroying it using high energy proton radiography (pRad) and synchrotron x-ray radiography. Amy Clarke of Metallurgy (MST-6) led a team that demonstrated the ability to use pRad, an imaging technique invented at Los Alamos, to examine large volumes (greater than 10,000 mm3) of metallic alloys during solidification. The researchers complemented the studies with local, higher resolution observations via synchrotron x-ray radiography, a technique that favors the examination of small volumes (less than 1 mm3) and low-density metals. Proton radiography enables direct observations of structural outcomes as a function of processing. It also affords studies of three-dimensional processes, such as fluid flow encountered during solidification for which thick sections, rather than thin (constrained) sections, better represent processes that occur in actual castings. This information bridges the micro- and macro- length scale regimes and provides insight into solidification processes.

These real-time imaging methods could enable efficient directed synthesis and processing to control structure evolution during solidification and the creation of optimal properties during process development. Experiments such as these could revolutionize our knowledge of metal casting and transform our ability to model these phenomena accurately.

Research achievements

The team used 800 MeV protons at LANSCE and synchrotron X-ray radiography at ANL's Advanced Photon Source to interrogate solidification in an alloy of aluminum with a 10 atomic percent indium addition. This alloy exists as two separate liquid phases before solidification. The scientists monitored the fluid flow and structure evolution in the experiments. The team made the first-ever pRad video sequence (avi) of the metal alloy melting and solidification. The minority and majority liquid phases behave similarly to oil droplets in water, except that the denser, indium-rich liquid droplets sink instead of floating in the majority aluminum-rich liquid phase as seen in this video (avi).

The team

The scientific team included Clarke, Seth Imhoff, Paul Gibbs, Jason Cooley, Tim Tucker, Kester Clarke, Joel Montalvo, Robert Field, James L. Smith, Thomas Ott and Martha Barker of Metallurgy (MST-6); Christopher Morris, Brian Hollander and Fesseha Mariam of Subatomic Physics (P-25); Frank Merrill of Neutron Science and Technology (P-23); Brian Patterson of Polymers and Coatings (MST-7); Dan Thoma and David Teter of Materials Science and Technology (MST-DO); Wah-Keat Lee of Brookhaven National Laboratory; and Kamel Fezzaa and Alex Deriy of Argonne National Laboratory.

The DOE Office of Science, Basic Energy Sciences Program through the Early Career Program and the Los Alamos Laboratory Directed Research and Development (LDRD) Program funded different aspects of the LANL work. The Proton Radiography Facility, a user facility at LANSCE, is sponsored primarily by NNSA Science Campaigns. The DOE Office of Science funds the Advanced Photon Source User facility at Argonne National Laboratory. The work supports Los Alamos National Laboratory’s Energy Security and Nuclear Deterrence mission areas and the Materials for the Future and Science of Signatures science pillars.

Caption for image below: Protons and x-rays permit nondestructive and direct imaging of metal alloy melting and solidification. The left image of the schematic highlights that protons can now be used to examine a large sample volume during solidification, which is relevant for casting, whereas the right inset image highlights a representative sample volume probed using x-rays. The images depict solidification structure development in an aluminum-10 atomic percent indium alloy at different length scales. S, L, and I denote solid, liquid, and interface, respectively.


Innovations for a secure nation

Lab team makes unique contributions to the first bionic eye

Lab team makes unique contributions to the first bionic eye

The Argus II will help people blinded by the rare hereditary disease retinitis pigmentosa or seniors suffering from severe macular degeneration.

» All Innovations

Calendars

Contact LANL

Mailing Address
P.O. Box 1663
Los Alamos, NM 87545

Journalist Queries
Communications Office
(505) 667-7000

Directory Assistance
(505) 667-5061

All Contacts, Media







Visit Blogger Join Us on Facebook Follow Us on Twitter See our Flickr Photos Watch Our YouTube Videos Find Us on LinkedIn Find Us on iTunes