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MCMC in Bayesian data analysis

Simulation

Model A
{x}

Measurement
System Model

MCMC

Measurements, Y

-ln p(Y | Y*)
= 1/2 �

�

- ln p(x | Y)

• - log(likelihood� distribution is result of calculation; function of model
parameters x

• Markov Chain Monte Carlo (MCMC) algorithm draws random samples
of x from posterior probability  p(x|Y)

• Produces plausible set of parameters {x}; therefore model realization

Y*(x)



Feb. 21, 2001 SPIE Medical Image Processing Conf. 4

MCMC - problem statement

• Parameter space of n dimensions represented by vector x
• Given an “arbitrary” target probability density function

(pdf), q(x), draw a set of samples {xk} from it
• Only requirement typically is that, given x, one be able to

evaluate Cq(x), where C is an unknown constant, that is,
q(x) need not be normalized

• Although focus here is on continuous variables, MCMC
can be applied to discrete variables as well
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Uses of MCMC

• Permits evaluation of the expectation values of functions
of x, e.g.,
             � f(x)� = � f(x) q(x) dx  � (1/K) �k  f(xk)
– typical use is to calculate mean �x� and variance �(x - �x�)2�

• Useful for evaluating integrals, such as the partition
function for properly normalizing the pdf

• Dynamic display of sequences provides visualization of
uncertainties in model and range of model variations

• Automatic marginalization; when considering any subset
of parameters of an MCMC sequence, the remaining
parameters are marginalized over (integrated out)
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Metropolis Markov Chain Monte Carlo
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• Metropolis algorithm:
– draw trial step from

symmetric pdf, i.e.,
 t(��x) =  t(-�x)

– accept or reject trial step
– simple and generally

applicable
– relies only on calculation

of  target pdf for any x

Generates sequence of random samples from an
arbitrary probability density function



Feb. 21, 2001 SPIE Medical Image Processing Conf. 7

Metropolis algorithm
• Select initial parameter vector x0

• Iterate as follows:  at iteration number k
  (1) create new trial position x* = xk + �x ,
         where �x is randomly chosen from t(�x)
  (2) calculate ratio  r = q(x*)/q(xk)
  (3) accept trial position, i.e. set  xk+1 = x*
          if r � 1 or with probability r, if r < 1
          otherwise stay put,  xk+1 = xk

• Requires only computation of q(x)
• Creates Markov chain since xk+1 depends only on xk
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Gibbs algorithm
• Vary only one component

of x at a time
• Draw new value of xj from

conditional pdf
    q(xj| x1 x2... xj-1 xj+1... )

• Cycle through all
components

x
�

Probability(x
�
, x

�
)

x
�
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• Often called hybrid method because it alternates Gibbs
& Metropolis steps

• Associate with each parameter xi  a momentum pi

• Define a Hamiltonian (sum of potential and kinetic
energy):

H = �(x) + � pi
2/(2 mi)  ,

where � = -log (q(x))
• Objective is to draw samples from new pdf:

         q'(x, p) � exp(- H(x, p)) = q(x) exp(-� pi
2/(2 mi))

• Then set of samples {xk} represent draws from q(x);
p dependence marginalized out

Hamiltonian method
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• Gibbs step: randomly sample momentum distribution
• Follow trajectory of constant H using leapfrog algorithm:

  where � is leapfrog time step
• Metropolis step: accept or reject on basis of H at

beginning and end of H trajectory

Hamiltonian algorithm
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Hamiltonian hybrid algorithm

xi

pi

k

k+1

k+2

Typical trajectories:
    red path - Gibbs sample from momentum distribution
    green path - trajectory with constant H, follow by Metropolis
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• Gibbs step - easy because draws are from uncorrelated
Gaussian

• H trajectories followed by several leapfrog steps permit
long jumps in (x, p) space, with little change in H
– specify total time = T ; number of leapfrog steps = T/�

• Metropolis step - no rejections if H is unchanged

• Adjoint differentiation efficiently provides gradient

Hamiltonian algorithm
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2D isotropic Gaussian distribution

Long H trajectories - shows ellipses
when �1 = �2 = 1, m1 = m2=1

Randomize length of H trajectories
to obtain good sampling of pdf
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MCMC Efficiency
– Estimate of a quantity from its samples from a pdf q(v)

– For N independent samples drawn from a pdf, variance in estimate:

– For N samples from an MCMC sequence with target pdf q(v)

where � is the sampling efficiency
– Thus,       iterations needed for one statistically independent sample
– Let v = variance because aim is to estimate variance of target pdf
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n-D isotropic Gaussian distributions

• MCMC efficiency
versus number
dimensions
–  Hamiltonian method:

drops little
– Metropolis method:

goes as 0.3/n

• Hamiltonian method
much more efficient at
high dimensions

Hamiltonian

Metropolis
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2D nonisotropic Gaussian distribution

• Nonisotropic Gaussian target pdf: �1 = 4, �2 = 1, m1 = m2=1
• Randomize length of H trajectories to get random sampling
• Convergence: determine whether sequence samples target pdf
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Convergence test statistic
• Variance integral

by integration by parts and
– limits are typically �� and last term is usually 0
– thus, integrals are equal

• Form ratio of integrals, computed from samples xk from p(x)

• R tends to be less than 1 when p(x) not adequately sampled
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Convergence - 2D nonisotropic Gaussians

• Nonisotropic Gaussian target pdf: �1= 4, �2= 1, m1= m2= 1
– control degree of pdf sampling by using short leapfrog steps (� = 0.2)

and Tmaxmax  = 2

• Test statistic R < 1 when estimated variance is deficient

R(1)
R(2)est. var(2)

est. var(1)/16
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16D correlated Gaussian distribution

• 16D Gaussian pdf related to smoothness prior based on
integral of L2 norm of second derivative

• Efficiency/(function evaluation) =
2.2% (Hamiltonian algorithm)
0.11% or 1.6%  (Metropolis; w/o & with covar. adapt.)
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MCMC - Issues
• Identification of convergence to target pdf

– is sequence in thermodynamic equilibrium with target pdf?
– validity of estimated properties of parameters (covariance)

• Burn in
– at beginning of sequence, may need to run MCMC for

awhile to achieve convergence to target pdf
• Use of multiple sequences

– different starting values can help confirm convergence
– natural choice when using computers with multiple CPUs

• Accuracy of estimated properties of parameters
– related to efficiency, described above
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Conclusions
• MCMC provides good tool for exploring the Bayesian

posterior and hence for drawing inferences about models
and parameters

• Hamiltonian method
– based on Hamiltonian dynamics
– efficiency for isotropic Gaussians is about 7% per function

evaluation, independent of number of dimensions
– much better efficiency than Metropolis for large dimensions
– more robust to correlations among parameters than Metropolis

• Convergence test based on gradient of -log(probability)
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