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Overview

Minus-log-probability analogous to a physical potential
Gaussian approximation near peak of probability density function
Probing the covariance matrix with an external force

» deterministic technique to replace stochastic calculations
Examples

Potential applications
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Physical potential

Spring produces restoring force
proportional to displacement from

its equilibrium position
F=—kx

Potential 1s integral of force

P(x) = IFdx:%kx2

» 1t 1s often more useful to think
about a physical problem 1n terms
of potentials instead of forces

Derivative of potential 1s force

do(x) _ .
dx

Mass suspended
from a spring

Unloaded position

M

Mg

At equilibrium
kx = Mg
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Analogy to physical system

Analogy between minus-log-posterior and a physical potential
pla)=—log p(a|d,T)

» a represents parameters
d represents data

I represents background information, essential for modeling
Gradient 0 ¢ corresponds to forces acting on the parameters
Maximum a posteriori (MAP) estimates parameters a,p

» conditionis d,p =0

» optimized model may be interpreted as mechanical system in
equilibrium — net force on each parameter is zero

This analogy 1s very useful for Bayesian inference
» conceptualization

» developing algorithms
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Gaussian approximation

Posterior distribution 1s very often well approximated by a
Gaussian 1n the parameters

Then, ¢ 1s quadratic in perturbations in the model parameters
from the minimum 1n ¢ at a:

pa)=L(a-a)'K(a-a)+go,,

where K 1s the ¢ curvature matrix (aka Hessian);

Uncertainties in the estimated parameters are summarized by the
covariance matrix:

cov(a) = <(a —d)a— &)T> —C=K"

Inference process becomes one of finding @ and C
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Eftect of external force

Consider applying an constant external force to the parameters
Effect 1s to add a linearly increasing term to potential

¢'(a)=5(a-d) K(a-a)+o,, - f a
Gradient of perturbed potential 1s
8(0 =K(a-a)-f
At the new minimum, gradient 1s zero, so

Sa_. =d' -a=K'f=Cf

min

Displacement of minimum 1n parameters, oa_... , 1s proportional

to covariance matrix times the force

min

With external force, one may “probe” the covariance

» each applied force probes one column (or average of several)
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Eftect of external force

* Displacement of minimizer of
@, da, may not be in direction 2-D parameter space

of the applied force, f

« Displacement is controlled by A ¢ contour

the covariance matrix b

f

» 1ts direction 1s determined
by correlations Sa

» 1ts magnitude 1s
proportional to variance

(inversely proportional to
the curvature or stiffness)
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Simulated data for straight line

4 . T
351 10 data points

Linear model: y =a+bx
a 1s Intercept at x =0

b is slope of line il

2.5}
Simulate 10 data points, with |
values: a=0.5 b=0.5 15l _
. . - blue line
Add random Gaussian noise: 1t minimizes
c,=0.2 05
00 1 2 3 4 5

Find straight line that minimizes

d.—y.(x;a)

l

» where d. are the data, y, are the
model values at positions x;
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Apply force to solution

Apply upward force to solution
line at x = 0 and 4

find new minimum in ¢ Pull upward on line

» thus, pull only on parameter a 3}

Effect is to pull line upward at ___,Jr"”?
x = 0 and reduce its slope > 2| | _,'T"?
: : L=¥"
» data constrain solution il f green line
. g 1k ' _..-—'+' minimizes new
New potential 1s -t ,
, .—f ¢’ (external force)
0'=@-fxa
L. 0 ' ' ' '
From our physical insight, 0 1 S 4

conclude that a (intercept) and
b (slope) are anti-correlated

Sept. 24, 2013 BIE Users Group Meeting 2013 9



Apply several levels of force to solution

4 - : :
» Family of lines shown for forces | UPwardforceatx=0
applied upward at x = 0: o} f =£7.87,£15.75
f=+787,£15.75 -
» observe proportional > 2 L e *
displacement of intercept L'__,.w"'
(x = O) 1t #4;.--"':
k2=
% 1 > 3 4
X

* These results yield quantified
estimates of parts of the
covariance matrix
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Uncertainties 1n straight line fit

Plot above shows results for variety 0.6 —————— .
of forces applied upward at x =0 0l f atx=0 da
» perturbations in parameters 2 0.2y
proportional to force o 0
» slope of da=062=C_ = (0.127) 0.2 8b
» slope of b =C_, = — 4.84x10"3 =4

. : . 30 20 -10 O 10 20 30
Plot below shows change In min. @ 1S Force (upward at x = 0)

quadratic function of force
» for force f=+c_1=(0.127)"
min ¢ increases by 0.5
(min y? increases by 1)
Either dependence provides a way
to quantify (co)variance estimates

: 30 20 10 0 10 20 30
Cbb not determined Force (applied upward at x = Q)
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Compare to result from standard mimimum-x2

e Fit linear model: y =a+bx :
* Determine parameters a and b by 32
minimum 2> (least-squares) analysis '

e Results: y2. =404 p=0.775
a=0484  5=0.523

o,=0.127 o0,=0.044 0, : . . . .
» correlation: r , =—0.867 -
0.8} Scatter plot

 (Covariance estimates from these
> Caa - Gaz = (0127)2 0.6 i
> Cabzl’abGaGb:—4.84X10_3

0.4}
» these are 1dentical to estimates

obtained by applying external force 0.2
» C,,not determined with external force 02 04 06 08
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Simple spectrum problem

Simulate simple spectrum with a
single peak:

» Gaussian peak (ampl =2, w=10.2)

» quadratic background 3

» add random noise (rmsdev = 0.2)
Minimize ¢ wrt 6 parameters A

» amplitude, width, position of peak 1}

» 3 coefficients for quadratic
background % ] 5 3 4 5

Nonlinear problem

Suppose quantity of interest 1s the area
under the peak;

» what force should be applied to parameters?
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External force for derived quantities

Consider a scalar quantity z, which is a function of parameters a

z=z(a)
The small perturbation oa results in a perturbation in z
0z = SZT oa

» where s_1s the sensitivity vector for z (derivative of z wrt a)

The variance 1n z 1s
C. =var(z) = <5Z 5ZT> = <sZT oa 5aTsZ> = sZT C,s.

« standard result for propagating covariance

The force on parameters a needed to probe z 1s
f.=s5=0,z

resulting in oz=C_f.
which 1s the same relation as for oa
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Simple spectrum — apply force to peak area

* Area under Gaussian peak;
a = amplitude, w = rms width:

A=~2maw
= (.86

* To examine the area, apply force
to parameters proportional to
derivatives of area wrt parameters,

04 _ [ 04 _ Ho
P 27TW Sy = 27ra

* Plot shows result of applying force
proportional to these derivatives

» area of Gaussian increased

» background altered slightly

> 2r
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Simple spectrum — apply force to peak area

« Examples of sizable +/— forces applied

to area

Sept. 24, 2013
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*M |
+

1 TR

Hrly

% 1 5 3 4 5

f, = 3.4%(0.101)"

X

fy = — 8x(0.101)"
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Simple spectrum — apply force to peak area

Plot shows nonlinear response, but zj
approximately linear for small f 0ol

0

Plot below shows o¢, .. as function <«

of displacement 64 Zj
0@ has quadratic form for small 64 -0.61
2 80 60 40 20 0 20 40
6(0 _ l|:6_A:| Force (applied to area of peak)

2 GA 12

» this relation allows one to estimate 107
o, from a displacement produced 8
by single small applied force: Z 6
» 0,=0.098 (- side); 0.104 (+ side) 4
ol

0.6
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Compare to standard x* analysis

Minimum X2 fit .

Fit involves 6 parameters

. 3
» nonlinear problem

» results: Zim =34.32 p=0.852 > 21
ampl C,i = 1948 O-a = 0149

width #=0.1759 o =0.0165 1t

» correlation: r, = —0.427

% 1 > 3 4 5

From these, standard error 1n area

1/2
o,=\2r7 |:W20'j +a’c. — rawawaaaw} =0.093

» this result agrees fairly well with
external force estimates (0.098 and
0.104), considering nonlinearity
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Summary of steps to estimate variance

Find values of model parameters a that minimize @

Decide on quantity of interest z

If z 1s not one of parameters, calculate s, =0,z

Find parameter values that minimize ¢ "= @ — k s_ ' a,

for some scaling factor & (appropriate value is about 1)

Check that change in @ 1s around 0.5; if not adjust £ and minimize
¢ again

From perturbations in parameters, estimate standard error in z by
either formula:

2 _ 0z __0z
> O-Z—k or O, \/m

Further diagnostics may be helpful, if more calculations feasible
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Tomographic reconstruction from two views

* Problem: reconstruct uniform-density object from two projections
» 2 orthogonal, parallel projections (128 samples in each)
» Gaussian noise added

Two orthogonal projections
» assume smooth boundary with 5% rms noise

PROJECTION 41

Original object - M

mocC=Hr 1>

mMeC—HHrIX>
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The Bayes Inference Engine

« BIE data-flow diagram to find max. a posterior1 (MAP) solution

Input projections

(Pl _loglikelihood- ! 4’

[on |

Boundary
description

F i .|—|. .|—|:. Chi-sguared
= = —

Froj Data

Geometric Ohject Convert to Image Farallel Proj =
Log Pogterior

[ |
iy
Log Curve Prior

Ciptimizer

.aS ¢ o,
— log prior = oy §K ds

» Optimizer uses gradients that are efficiently calculated by adjoint
differentiation, a key capability of the BIE
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MAP reconstruction — two views

Model object in terms of:

Reconstructed boundary
(gray-scale) compared with
original object (red line)

» deformable polygonal boundary
with 50 vertices

» boundary smoothness constraint
» constant interior density

Determine boundary that
maximizes posterior probability

Reconstruction not perfect,
but very good for only two
projections

Question 1s:
How do we quantify uncertainty
in reconstruction?
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Tomographic reconstruction from two views

Stiffness of model proportional to

curvature of @ Applying force (white bar) to
: : MAP boundary (red) moves it to
Displacement obtained by new location (yellow-dashed)

applying a force to MAP model
and re-minimizing @ 1s
proportional to a (or average of)
column(s) of covariance matrix
Displacement divided by force

» at position of force, it 1s
proportional to variance there

» clsewhere, 1t 1s proportional to
covariance

This approach may be efficient
alternative to MCMC
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Covariance using MCMC

Use MCMC to draw samples

from posterior 3 boundaries from 150,000
MCMC steps

Parameters consist of 50 vertices
defining object boundary

MCMC (Metropolis) 150,000
steps; display shows three
selected boundaries

Advantage: obtain full
covariance matrix

Disadvantage: calculation takes
over 2000 times longer than
technique of probing posterior

compared uncertainties to
MAP estimated object
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Summary

* Technique has been presented that

» 1s based on interpreting minus-log-posterior as physical
potential energy

» allows one to directly probe a specified component of
covariance matrix by applying force to estimated model

» replaces a stochastic calculation (e.g., MCMC) by a
deterministic one

» may efficiently provide uncertainty estimates in
computational situations
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Situations where probing covariance useful

* Technique will be most useful when

» 1Interest 1s 1n uncertainty in one or a few parameters or derived
quantities out of many parameters

» full covariance matrix 1s not known (nor desired)
» posterior can be well approximated by Gaussian pdf in parameters
» optimization easy to do

» gradient calculation (for optimization) can be done efficiently,
¢.g. by adjoint differentiation of the forward simulation code

* Technique may also be useful for exploring and quantifying

» non-Gaussian posterior pdfs, including situations with inequality
constraints, €.g., non-negativity

» general pdfs; in contexts other than probabilistic inference
» pdfs of self-optimizing natural systems (populations, bacteria, traffic)
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Research topics

* Need to explore behavior of probing technique for
» non-Gaussian posterior pdfs
» 1nequality constraints, €.g., non-negativity

» derived quantities with nonlinear dependence on parameters
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