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1. INTRODUCTION 

When using simulation codes, one often has the task of minimising a scalar objective function with respect to 
numerous parameters.  This situation occurs when trying to fit (assimilate) data or trying to optimise an engi-
neering design.  For simulations in which the objective function to be minimised is reasonably well behaved, that 
is, is differentiable and does not contain too many multiple minima, gradient-based optimisation methods can 
reduce the number of function evaluations required to determine the minimising parameters.  However, gradient-
based methods are only advantageous if one can efficiently evaluate the gradients of the objective function.  
Adjoint differentiation efficiently provides these sensitivities [1].  One way to obtain code for calculating adjoint 
sensitivities is to use special compilers to process the simulation code [2].  However, this approach is not always 
so ‘automatic’.  We will describe a modular approach to constructing simulation codes, which permits adjoint 
differentiation to be incorporated with relative ease. 

2. ADJOINT DIFFERENTIATION 

Figure 1 schematically shows a data-flow diagram for a sequence of calculations.  The goal is to determine 
the derivatives of the scalar output from this sequence ϕ with respect to the input data vector x.  Since ϕ is a 
function of z, z is a function of y, and y is a function of x, the chain rule of differentiation applies: 
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Theoretically, the order of the summation doesn’t matter.  However, in computations it is better to sum over k 
before j, to avoid propagating large derivative matrices in the forward direction.  This reverse flow for the 
derivative calculation, shown in Fig. 1 as the dashed arrows, is called the adjoint differentiation calculation. 

 

Figure 1.  A data-flow diagram describing a sequence of transforms of an input data vector x into a scalar output 

functional ϕ.  The data structures x, y and z may be large.  Derivatives of ϕ with respect to x are most efficiently 
evaluated by propagating derivatives of ϕ with respect to the intermediate variables in the reverse (adjoint) 
direction (dashed lines).  

In the modular approach implied by Fig. 1, each box represents a software module that performs a particular 
transformation of the input data to produce output data.  In this approach adjoint differentiation can be achieved 
relatively easily.  The only requirement is that each module not only be able to perform its forward transforma-
tion, but also be able to calculate the derivative of its outputs with respect to its inputs.  The forward simulation 
process is achieved by linking together the necessary modules.  The output of the simulation is the objective 
function to be minimised, for example, the measure of mismatch to some given measurements.  The data-flow 
diagram (network or graph) that describes the forward calculation automatically provides the path for the reverse 
or adjoint calculation needed to accumulate the sensitivities of the objective function to any parameters in the 
simulation model.  In this framework, the sensitivities of the output objective function with respect to all the 
simulation parameters can be automatically calculated in a time that is comparable to the forward simulation 
calculation. 
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3. BAYES INFERENCE ENGINE 

The Bayes Inference Engine (BIE) provides a superb example of the modular approach to modelling and 
sensitivity analysis.  The BIE is a computer application for analysing radiographs and making inferences about 
an object being radiographed [3].  The BIE is a graphical programming tool that automatically implements 
adjoint differentiation, which facilitates advanced model building and allows hundreds or thousands of parame-
ters to be determined by matching a radiograph in a reasonable time. 

The BIE represents a computational approach to Bayesian inference, as opposed to the traditional analytical 
approach.  The computational approach affords great flexibility in modelling, which facilitates the construction 
of complex models.  The BIE easily deals with data that are nonlinearly dependent on the model parameters.  
Furthermore, the computational approach allows one to use nonGaussian probability distributions, such as 
likelihood functions based on Poisson distributions.  Figure 2 shows the canvas of the BIE for a tomographic 
reconstruction problem in which three projections of a 2D object are used to determine the shape of the object.  
The reconstructed object is modelled as a uniform (known) density inside a flexible boundary, specified in terms 
of a 60-sided polygon.  A smoothness prior is placed on the boundary.  The BIE’s automatic adjoint differentia-
tion permits the 120 variables to be determined in 20 optimiser iterations, or in a time corresponding to around 
50 forward-model evaluations. 

The BIE is designed and programmed within an object-oriented framework in which it id easy to make con-
nections work in the reverse direction.  An interesting aspect of the BIE is that there is no supervisory code.  The 
modules act autonomously by responding to requests from other modules that are connected to their output for 
updated results.  Each module asks its inputs for current information and then does its own calculation.  It is the 
module at the end of the calculation, the optimiser in Fig. 2, that initiates the requests and finally gets the results 
of the calculation.  The parameter modules (boxes labelled as P) terminate requests for forward calculations.  
This modular approach greatly simplifies adjoint calculations.  The reverse flow of the derivatives proceeds in 
much the same manner.   

 

 

Figure 2.  A canvas from the BIE showing a data-flow diagram composed to simulate a radiographic measure-
ment of an object that is defined in terms of a geometric description of its boundary.  The minus-log-likelihood is 
added to a minus-log-prior to obtain a minus-log-posterior, which is to be minimised with respect to the 
geometry.  Derivatives of the minus-log-posterior with respect to the geometric parameters are automatically 
calculated in the BIE in a computational time that is comparable to the forward simulation calculation. 
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Figure 3.  An optimisation achieved with the BIE with the diagram shown in Fig. 2.  Three noisy projections of 
the original object (left) are available, making this a very difficult reconstruction problem.  The image on the 
right represents the shape that minimises the minus-log-posterior on the right in Fig. 2, obtained by varying the 
120 parameters that describe its geometric boundary.   

4. DISCUSSION 

The modular approach to adjoint sensitivity calculation incorporated in the BIE can readily be applied to 
other simulation applications.  References [4] and [5] demonstrate the use of adjoint differentiation to solve a 
complex inversion problem involving the diffusion of infrared light in tissue.  Figure 4 shows the data-flow 
diagram, which could be used as a basis for creating the modular design described above. 

Adjoint sensitivities are only not useful for optimisation, but also for drawing inferences about the uncertain-
ties in model parameters.  For example, the Hamiltonian method of Markov Chain Monte Carlo [6] uses the 
gradient of the minus-log-posterior function.  MCMC is implemented in the BIE by replacing the optimiser by 
an MCMC module. 

 

 
Figure 4.  A data-flow diagram for the simulation of a time-dependent diffusion process.  The parameters in the 
upper-left hand box, the position-dependent diffusion constant and absorption coefficient, control the diffusion.  
The ∆T boxes provide the time-step calculation for the light-intensity field U, which is sampled to compare to 
time-dependent measurements.  The output of the calculation is the scalar  χ

2
/2, which is to be minimised to 

obtain the best match to the measurements.  The minimisation is efficiently accomplished through use of the 
gradients calculated by the adjoint method, which follows the direction of the dashed arrows. 
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