
An object�oriented implementation of a

graphical�programming system

G� S� Cunningham� K� M� Hanson� G� R� Jennings� Jr�� and D� R� Wolf�

Los Alamos National Laboratory� MS P���

Los Alamos� New Mexico ����� USA

email	 cunning
lanl�gov

ABSTRACT

Object�oriented �OO� analysis� design� and programming is a powerful paradigm for creating software

that is easily understood� modi�ed� and maintained� In this paper we demonstrate how the OO concepts of
abstraction� inheritance� encapsulation� polymorphism� and dynamic binding have aided in the design of a
graphical�programming tool�

The tool that we have developed allows a user to build radiographic system models for computing simulated

radiographic data� It will eventually be used to perform Bayesian reconstructions of objects given radiographic
data� The models are built by connecting icons that represent physical transformations� such as line integrals�
exponentiation� and convolution� on a canvas�

We will also brie�y discuss ParcPlace	s application development environment� VisualWorks� which we have
found to be as helpful as the OO paradigm�

� Introduction

In this paper we discuss the importance of OO concepts for software development in the context of a graphical
programming tool� The graphical programming tool that we have built allows a user to instantiate data�

transform icons and connect these transforms with lines to de�ne a 
data��ow� diagram on a canvas that
appears on a workstation screen� The icons represent transforms that map input data to output data� e�g� the

line integral transform of the input data� exponentiation of the input data� the addition of two data inputs�
etc� The data��ow diagram represents a measurement system�

Our goal is to use the graphical programming tool in conjunction with a �D radiographic object modeling

tool that is still in the process of being built� The object�modeling tool will allow a user to lay down simple �D
shapes and then twist� warp� and deform them to create novel shapes� Furthermore� the user will eventually

be able to identify parameters of the created object that are subject to uncertainty for Bayesian inference and
hypothesis testing�

We believe that these tools will be useful to scientists and engineers for orchestrating Bayesian inference

and hypothesis testing of geometric object parameters 
��� ��� given real radiographic data 
��� The general
problem for which these tools are intended is the determination of an object of unknown shape and distribution�
described by a user�de�ned parameterization� given limited data generated by a well�characterized� user�de�ned
measurement system�

�Supported by the United States Department of Energy under contract number W������ENG���	

�



The software described in this paper was written in an OO programming language� Smalltalk��� 
��� in the
context of ParcPlace	s supporting environment� VisualWorks 
���� We have found that the OO concepts of
abstraction� inheritance� message�passing� encapsulation� polymorphism� and dynamic binding� are important
in realizing our goal of a �exible and powerful software solution� In the discussion of the graphical programming

software� we will provide examples of how each of these concepts was important�

The rest of the paper is organized as follows� the next section will de�ne basic OO concepts� Section � will
describe the graphical programming tool� with an emphasis on the software	s structure and the importance of

the OO concepts discussed in Section �� Section � will describe Smalltalk��� and VisualWorks and the impact
both had on our software development�

� The Object�Oriented Paradigm

The OO paradigm has recently attracted attention because of its promise for code re�use and ease of main�

tainence� in addition to the natural and intuitive language it promotes for discussion of software problems and
their solutions 
����

��� OO concepts

Software development using the OO paradigm 
�� ��� includes the same three phases that are used in other
software�engineering methodologies� analysis �OOA�� design �OOD�� and programming �OOP�� In OOA� OOD�
and OOP� the concept of class and object is critical� A class is an abstraction of an object� A class is de�ned as

a set of methods� or functionality� and attributes� or data� An object is a particular instance of a class� in the
sense that it has speci�c values for its attributes� For example� a Car class may have a color attribute� while
a Car object may have a red instance of the color attribute� The concept of inheritance allows the software

developer to organize classes into a hierarchy� wherein subclasses� which are lower in the hierarchy� inherit

methods and attributes from superclasses� which are higher in the hierarchy�

The 
world outside� of an object can communicate with that object only through messages sent to it that
request some method to be performed� The implementation of the method is entirely up to the object that

possesses it� and is of no concern to the outside world� Thus� attributes are encapsulated by their methods
so that internal data representations and implementations of data retrieval are unimportant to the outside
world� That is� if the value of a certain attribute of object �� is desired by object ��� object �� has to send
a message to �� requesting the value of that attribute� Object �� can then implement the retrieval of that

attribute value in any way it desires�

If many objects can respond to the same message with potentially di�erent implementations of the method
associated with that message� we say that the system is polymorphic� For example� text strings� PostScript

documents� and raster images may all know how to print� but will certainly have di�erent implementations of
the method associated with the same message print�

Finally� dynamic binding is the capability provided in some programming languages to omit typecasting�

i�e� assigning a speci�c type such as integer� �oat� etc� The type of object bound to a message is determined
at run�time rather than at compile�time�



��� OO Analysis and Design

Software engineering experts seem to be split over whether the OOA� OOD� and OOP phases should be distinct
and sequential� or whether it is more desirable to use a recursive approach 
���� We have used a recursive

approach� in part because many of the OOA tools require a detailed problem statement� which was di�cult for
us to create at the beginning of the project� We found that 
use�cases� 
��� which document a typical user	s
interaction with the �nal product� were the most helpful OOA tool for de�ning the scope of our problem� but

we did not persist in their use long enough to prove them as valuable in a formal analysis or design�

Our approach was to rapid prototype a set of classes and then to use OOA tools �Object International	s
ObjecTool� to display the software	s structure and discuss it� The next stage of rapid prototyping was based
on these discussions� With the help of a consultant in OO technology we decided that we should use the

Coad and Yourdon OOA�OOD methodology 
��� which emphasizes the static nature of classes contained in
the inheritance tree� in conjunction with some elements of Rumbaugh	s methodology 
���� which contains
state diagrams for describing the dynamic nature of classes� although we have made little use of Rumbaugh	s

methodology thus far�

The OO concepts discussed in this section are important in all three phases of software development�
OOA� OOD� and OOP� In our limited experience with OOA and OOD� we have found that the OO paradigm
fosters creativity by making it easy to put aside implementation details� The OO concepts are important

because they allow software developers to discuss project goals using a natural language � one which revolves

around objects� their responsibilities or behaviors� and their attributes� However� we have more experience
concerning the importance of these concepts in OOP� and so the next section will be focussed on illustrating

their importance in OOP through examples drawn from our experience in building a graphical programming

tool�

� Discussion of the software

The graphical programming tool that we will discuss in this section is part of a larger project that is described

in Section �� The tool allows a user to construct measurement models for radiographic systems by graphically
connecting transforms to de�ne a data��ow diagram� The data��ow diagram represents the measurement
process� For example� a simple system model might consist of a sequence of transforms including� �� a line

integral transform that takes line integrals of a radiographic object	s attenuation pro�le in order to determine

the pathlength of photons traveling through the object� �� an exponentiation transform of the pathlength data
to determine the average probability that a photon travels through the object unscattered along the given
paths� and �� a spatial convolution transform that describes the detector	s blur function�

The graphical programming tool operates as follows� The user is presented with a window� or canvas� on
which appear buttons that allow the user to add items to� or delete items from� the canvas� The user can add
or delete Transforms and Connections� Transforms map input Data to output Data and are represented on

the screen with a ��x�� bit�mapped icon� The user can specify the direction of the �ow of data by connecting

one Transform to another using a Connector� which is represented on the screen as a line segment between
the two Transform icons that it connects� The user can move the Transforms on the canvas by clicking and
dragging the cursor when the cursor is in the region of the screen owned by the Transform	s icon� The user
can delete Transforms� and any Connections to the Transform are also automatically deleted� The user can

break Connection lines so that the Connection is represented with connected line segments rather than just
a single line segment between the two Transform icons it connects�

The Transforms are 
living� objects� and the user can interact with them in several ways� The user can see



a description of a Transform� and change the parameters that de�ne it� For example� a SetOfParallelLine�
Integrals has parameters that describe the angle�s� and separation of lines� a Convolution has parameters
that describe the �lter function� etc� The user can also message the Transform to display its output� This
message is forwarded to the Transform	s output attribute� which is messaged to display itself� The fact that

the Transform objects are alive distinguishes this graphical programming tool from one that allows a user to
construct and visualize a script that contains a sequence of actions to be executed in a certain order 
���

In this section� we describe the Transform� Data� and Connection classes with an emphasis on demon�

strating the utility of OO concepts�

��� Data class hierarchy

The Data class hierarchy is shown in Fig� �� The classes whose names start with Abstract are so named
because they are never instantiated� but provide a repository for methods and attributes contained by their
subclasses� The letter C is contained in the names of all of the classes in this hierarchy because they all contain

an attribute that points to external 
C� programming language data structures� kept external to the Smalltalk
programming environment for e�ciency of execution reasons� This class hierarchy is intended to capture the
structure and responsibility of vector and image data that will be manipulated by C programming language
subroutines�

The subclasses of AbstractCVector include Vector and Matrix objects that store values or coordinates
of �oat or integer types in C memory� VectorOfValues objects can perform pointwise transformations of
themselves� using the exponential� logarithmic� square root� and trigonometric functions� They can multiply

themselves pointwise by another VectorOfValues� subtract themselves� add themselves or copy themselves�
A FloatMatrixOfValues object can multiply itself by a FloatVectorOfValues object� A VectorOfValues

object can dot product itself with another VectorOfValues object� FloatVectorOfValues objects can be told
to display� This message produces a line plot of the data� FloatMatrixOfValues objects can also be told

to display� At present� this produces an ImageAnalysisManager that displays gray�scale views of the data
and provides some tools for manipulation of the display� Each of these behaviors can be elicited by sending a

single message to a VectorOfValues object�

In the graphical programming tool that we have described� Data are passed around by Connectors and ma�
nipulated by Transforms� and are naturally viewed as objects� Message�passing proves invaluable for making
code that involves Data objects comprehendable� Most functionality can be elicited with a single command� e�g�
aFloatVectorOfValues display� in which display is the message sent to the object aFloatVectorOfValues�

aFloatVectorOfValues exp� or

aFloatVectorOfCoordinates translateBy�aCoordinate�

in which translateBy� is the message sent to the object aFloatVectorOfCoordinates and the object

aCoordinate is the argument of the message�

Several other OO concepts are illustrated in this class hierarchy� Inheritance is used to indicate that all
CVectors must have an address �pointer to C memory� and size attribute� The size attribute may be a single
number� as for a FloatVector� or it may contain x and y components� as for a FloatMatrix� Although the

message sent to each in order to retrieve its size is the same� the methods are implemented di�erently� an
example of polymorphism� All subclasses of AbstractCVector possess the accessing methods� at�anIndex
and at�anIndex put�aCoordinate� Sending the message at�anIndex to a CVectorOfCoordinates returns

the �x� y� coordinate pair at the location speci�ed by anIndex� The implementation uses the fact that the
data are stored in C memory as x��� y��� x��� y��� ���� that is� as �x� y� pairs row�wise in one contiguous block�



On the other hand� sending the message at�anIndex to a CVectorOfValues returns the value at the location
speci�ed by anIndex �either an integer or �oat�� another example of polymorphism�

The implementations for accessing� displaying� and manipulating are hidden from the user and so the data

is encapsulated� If� at a later time� we wish to change the memory allocation protocol� we may also have to
change the implementation of the at�anIndex method in some or all of the subclasses of CVectorOfValues�
but we won	t have to change how every other object elicits the same old behavior�

FloatMatrixOfCoordinates and IntegerMatrixOfCoordinates share all methods and attributes except

the type of pointer to C memory that they have� The C memory is allocated� and the pointer to it de�ned� in
the instance creation method

FloatMatrixOfCoordinates new�aSize withAll�aCoord�

Note that we are able to avoid typecasting the address attribute that was inherited� an example of dynamic

binding�

��� Transforms

The Transform classes are relatively simple at this early stage in our software development� We have written
classes for several categories of Transforms� including MultiInputSingleOutput �Add� Multiply� Subtract��
SingleInputSingleOutput �Exponential� Log� SqRt� Sin� Cos� LineIntegral� ParallelLineIntegral� and
no�input single�output �Parameter and its subclasses��

All Transforms inherit output and dataSet attributes� The attribute output is generated from dataSet

using the subclass�speci�c method generateOutput� which �rst calls generateDataSet to get the current
dataSet and then computes output� Finally� all Transforms know how to displayOutput �this message is

forwarded to output which knows how to display itself��

All subclasses of Transform except Parameter share the method generateDataSet� generateDataSet

queries the Connections that are connected to the Transform in order to �nd the ones which deliver input to
it� These Connections are told to generateOutput and the return object is stored in the dataSet� Parameters

do not depend on a Connection object to deliver their data� and so they over�ride this inherited method�

Subclass�speci�c transformations are in the method generateOutput� so that sending this message to any
Transform will result in output being computed as a transformation of the input object� dataSet� an example

of polymorphism� Again� note that we can decide to change the implementation of the transform in order to
increase speed� etc�� but that this does not a�ect the 
rest of the world��

All transforms are implemented by telling items in dataSet to compute the transform associated with the

Transform object that contains dataSet as input� In this way� a LineIntegral can take line integrals of all
kinds of Data objects� since it just tells the Data object to take line integrals of itself� The responsibility lies
with the Data object� This mechanism is called double dispatching� which is a way to implement dynamic bind�

ing� Another example of double dispatching is the following implementation of aFloat addSelfTo�aNumber�

aFloat doesn	t know the type of aNumber� aFloat could have logic that �rst determines what the type of
aNumber is and then pick an implementation that is consistent with aNumber	s type �equivalent to a case
statement in C�� or it could simply say aNumber addSelfToFloat�aFloat� Since aFloat knows that it is a

Float object� it can pick the proper implementation for aNumber to do the addition properly�



��� Connections

Connections merely transport Data from one Transform to another� which is a trivial responsibility in the
context of the environment we are operating in at present� wherein Data is stored in memory on a single CPU

computer� However� Connectionsmight be very useful in a distributed environment or in an application where
Data is stored in a database or even in �les� Note that� even though a Connection merely passes along Data

from one Transform to another� even this simple activity exhibits the important concept of dynamic binding�

Since Connections don	t know what type of Data they are passing� the reference to the passed object cannot
be typecast� Similarily� the Connection doesn	t know what type of Transform it is getting Data from and
passing it to� Thus� the attributes that hold these input and output Transforms cannot be typecast� For
example� the user might use a aConnection to connect aFloatVector to a Convolution or a aFloatMatrix

to a Convolution� but this is not determined until the application is run� so that the input to aConnection

cannot be typecast to either the FloatVector or the FloatMatrix class at compile�time�

��� Advantages of OOP

����� Ease in understanding software

The notion of objects is natural and intuitive since we think in terms of objects� Objects have respon�

sibilities or behaviors that they must be able to perform and attributes that describe their current state�
Behaviors of one object are elicited by another object through messaging� Objects are passed as arguments
of messages� meaning that tremendous information can be passed into an object with a minimal amount
of syntax� For example� the generateOutput method of aTransform might contain the single line dataSet

lineIntegralSpecifiedBy�aLineIntegralDescription� The object dataSet might be a very complex �D
parameterization of a radiographic object� aLineIntegralDescriptionmight be an attribute�rich object �like
a C structure� that contains a long list of speci�cations that de�ne lines along which dataSet is to compute its

integral� Alternatively� aLineIntegralDescription might be a method�heavy object that produces the set
of line integrals programmatically� aLineIntegralDescriptionmight also be able to answer questions about
what kind of set of line integrals it is so that dataSet could take advantage of particular regularities �like an
equally spaced set of parallel lines� e�g��� Message�passing with object arguments encourages the programmer

to write code that is compact and easy to comprehend�

Since many objects may have the same methods� the same message can be sent to di�erent objects with a
di�erent implementation in each case �polymorphism�� resulting in code that more closely parallels a natural

language description of the software	s function� Furthermore� the implementation is not important to the

outside world� �the data is encapsulated� and so internal data representation� accessing� and computation
can be modi�ed easily� Finally� inheritance trees put generic functionality higher in the tree so that only
methods and attributes that di�erentiate a class from its superclass are contained in the class description�

Inheritance makes it easier to comprehend classes� organize them� and re�use them�

����� Ease in extending software

The notion of objects puts an emphasis on responsibility� meaning that it is easy to determine where new

functionality should be put � it will be a method or set of methods belonging to some particular class or
set of classes� The inheritance tree allows the programmer to incrementally add responsibility and test it
by subclassing �rapid prototyping�� Encapsulation makes it easier to use the new functionality since the
implementation details are hidden� For example� when we wanted to make line plots of FloatVectorOfValues�



we created a new method called display for the class FloatVectorOfValues� Now� whenever an instance
of FloatVectorOfValues is told to display� it knows how to do it� This new functionality was engaged
immediately from other objects in the application� We didn	t have to worry about all of the setup particular
to aFloatVectorOfValues� e�g� the number of points in aFloatVectorOfValues� because this information is

stored as attributes of aFloatVectorOfValues� and is used by the method display� We have found rapid
prototyping to be a very important tool for testing ideas and stimulating new ones�

� Programming language and environment

In this section� we will brie�y discuss the impact that the programming language and environment has had

on our software development� Before choosing Smalltalk��� and the VisualWorks environment� we looked at
one other option� using C�� as the programming language� InterViews and�or DEC	s VUIT for building
graphical user interfaces �GUIs�� and CenterLine	s ObjectCenter environment for code development�

We feel that the C�� language is lacking in many respects� The language is essentially C� which we
feel does not encourage modularity� C�� enforces typecasting and dynamic binding is only allowed through
the use of virtual classes� We also felt that InterViews and VUIT were inadequate� In fact� we could not
�nd a good� portable GUI class library� InterViews and other packages are X�Windows based� but we are

interested in transparent portability to PCs� which don	t support X�Windows� DEC	s VUIT allows MacDraw�
like construction of GUIs� and generates the stubs that are associated with them� but� again� it is based on
X�Windows� Code development environments� like CenterLine	s ObjectCenter� still seemed immature to us�

Finally� and most convincingly� while ParcPlace	s VisualWorks melds the solutions to all of our requirements
into a seamless environment that works on multiple platforms� using C�� would have required us to use
several platform�speci�c tools that were not designed to work with one another�

��� Smalltalk�	


Smalltalk��� is a pure OOP language� incorporating all of the desirable characteristics described above� classes�
objects� inheritance� encapsulation� messaging� polymorphism� and dynamic binding� ParcPlace	s class library

contains several hundred useful classes and tens of thousands of methods� We have reaped many bene�ts by
building our class hierarchy underneath the ParcPlace library through subclassing� especially as regards the
GUI�

��� VisualWorks

ParcPlace	s VisualWorks is a development environment that greatly enhances the programmer	s productivity�
VisualWorks includes a tool for building GUIs with MacDraw�like commands� Many components are provided�

such as buttons� knobs� switches� sliders� text editors� etc� The graphical editor allows the programmer to
de�ne his own components and re�use them easily� The graphical editor also builds 
stubs� for the methods
connected to messages initiated by user interactions� e�g� when the user pushes on a button�

VisualWorks includes a debugger that allows easy access to the last several messages that were sent before

an error occurred� or a user�written program 
halt� or 
notify� was encountered� Inspectors can be used to
display the values of the attributes of the objects to which the last messages were sent� The ability to do
incremental compilation of individual methods and the integration of the code editor� compiler and debugger

mean that a seamless environment is provided for code development�



Furthermore� once the code is written� it can be run on a number of other platforms without modi��
cation� Smalltalk��� and VisualWorks are suppported on DECStation� Sun SPARC� NeXT ���� Macintosh�
MS�Windows� Sun Solaris ���� OS�� ���� IBM RS������ HP��������� and Sequent� Finally� ParcPlace pro�
vides the C Programmer	s ObjectKit �CPOK� for integrating C and C�� code into your application� On

some computing platforms� C�C�� code can be dynamically linked into the SmallTalk application�

��� Summary of Smalltalk�	
 and VisualWorks

It has been suggested 
�� that the OO paradigm may not be as important as the development environment in
terms of boosting productivity� However� we feel that VisualWorks and Smalltalk��� work hand�in�hand and
that it is di�cult to separate the contributions of one from the other�

The incremental compilation provided by VisualWorks is useful primarily because the piece of code being
compiled �and debugged� is usually a method of an object rather than an arbitrary chunk out of a stream of
code� Thus� when debugged and compiled� it truly provides an incremental extension to the functionality of
the system and can be used immediately�

We found that when we initially began to use Smalltalk���� debugging an entire application �collection of
classes� took more time to do initially than debugging an equivalent piece of C code� The reason for this is
that we were still learning the entire class library� which is inherited by our classes� Debugging is actually

the primary means by which we learned the class library provided by ParcPlace� Once the steep part of the
learning curve is overcome� though� the programmer �nds that debugging OO systems is very e�cient and
sensible� Again� the browsers and inspectors for the code and data� which are part of the debugger� are much
more useful because the code �methods� and data �attributes� are already organized via the class de�nitions

and inheritance tree�

The main contribution that the VisualWorks environment makes� independent of the language� is the

seamlessness with which the tools can be used together� The debugger contains a panel with a code editor and

incremental compiler� a panel with an inspector on the object of current interest� and a panel containing a list
of the most recent messages before the error or halt� Other browsers can be open simultaneously for a more

thorough browsing of related classes� The ease with which a programmer can �nd errors� �x them� recompile�
and restart the application profoundly enhances productivity� The environment encourages and rewards rapid

prototyping and reverse engineering �recursive approach� for designing� implementing� and evaluating a system�

� Conclusions

We have found that OO concepts play an important part in thinking about our software project and in building

a solution� Since the world around us is �lled with objects and their interaction� the OO paradigm meshes

well with our thought processes� The basic human instinct to categorize and organize is well�suited to the
construction of inheritance hierarchies� Abstraction and inheritance encourage the programmer to organize
his understanding of the software and make changes to it that �t in the existing structure sensibly� The real
ability to incrementally extend functionality using inheritance is evidenced by the dramatic increase in the

availability of source code for purchase from software vendors �in the form of class hierarchy libraries� instead
of executables�

Message�passing and polymorphism make the code easy to comprehend and prototype quickly since com�

pact� readable software modules are encouraged� For example� ParcPlace recommends that Smalltalk���
methods be no more than ��� lines long 
���� Encapsulation makes the code easy to extend since implementa�



tion speci�cs are hidden inside of objects that must ful�ll their responsibilities via appropriate behavior� but
can do the dirty details of that behavior in any way they like�

Our software resembles other applications that currently exist� some of which are also OO� For example�

graphical programming tools like Khoros 
��� AVS 
��� IRIS Explorer 
��� and VIVA 
��� allow a user to place
icons �that may represent data transforms� on a canvas and connect them to other icons� creating a data��ow
diagram� There are also abundant applications for free�hand drawing and solid object modeling� as well as class
libraries and OO graphical object descriptions 
���� However� our goals beyond the immediate project include

having control over and access to the software environment so that it is readily modi�able and extendable
for new projects and goals� Toward this end� we conclude that the choice of a robust OO programming
environment is necessary for us to create a comprehensive class library that will be useful in our future e�orts�

References


�� Advanced Visual Systems Inc�� ��� Fifth Ave�� Waltham� MA ������ e�mail address� avs�avs�com� ftp to
avs�ncsc�org 
����������������


�� Birchman� J�J�� Tanimoto� S�L�� Rowberg� A�H�� Choi� H�S�� and Kim� Y�� 
Applying a Visual Language for

Image Processing as a Graphical Teaching Tool in Medical Imaging�� Proc� SPIE� vol� ����� pp� ��������
�����


�� Coad� P�� and Yourdon� E�� Object�Oriented Analysis� Prentice�Hall� �����


�� Coggins� J�� 
Strategic Signi�cance of Object�Oriented Design�� Proc� SPIE� vol� ����� pp� �������� �����


�� Goldberg� A�� and Robson� D�� Smalltalk���� The Language� Addison�Wesley� �����


�� Hanson� K�M�� 
Bayesian reconstruction based on �exible prior models�� J� Opt� Soc� Am� A� vol� ���
����� pp� ���������


�� IRIS Explorer Center �North America�� ���� Opus Place� Suite ���� Downers Grove� IL ����������� e�mail

address� infodesk�nag�com� ftp to swedishchef�lerc�nasa�gov�


�� Jacobson� I�� Object�Oriented Software Engineering� A Use�Case Driven Approach� Addison�Wesley� �����


�� The Khoros Group� Room ��� EECE Dept�� University of New Mexico� Albuquerque� NM ������ e�mail

address� khoros�request�chama�eece�unm�edu� ftp to pprg�eece�unm�edu 
��������������


��� Koved� L�� and Wooten� W�L�� 
GROOP� An Object�Oriented Toolkit for Animated �D Graphics�� OOP�
SLA ����� Washington DC� pp� ��������


��� ParcPlace Systems� ��� East Arques Avenue� Sunnyvale� CA ����������� phone� ����� ����PARC�


��� Ralo�� J�� 
Brain Warping�� Science News� vol� ���� ����� pp� ��������


��� Rumbaugh� J�� Blaha� M�� Premerlani� W�� Eddy� F�� and Lorensen� W�� Object�Oriented Modeling and

Design� Prentice�Hall� �����


��� Szeliski� R�� and Lavallee� S�� 
Matching ��D Anatomical Surfaces with Non�Rigid Deformations using
Octree�Splines�� SPIE Geometric Methods in Computer Vision II� ����� vol� ����� pp� ��������


��� Taylor� D� A�� Object�Oriented Technology� A Manager�s Guide� Addison�Wesley� �����




��� Notes for 
Introduction to Smalltalk�� a course o�erred by ParcPlace Systems�


��� OOPSLA ����� Washington DC� 
Experience Reports� sessions� No published summary�


