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Abstract

A method for optimizing image- recovery algorithms is presented that is based on how well the specified
task of object localization can be performed using the reconstructed images. The task performance is
numerically assessed by a Monte Carlo simulation of the complete imaging process including the generation
of scenes appropriate to the desired application, subsequent data taking, image recovery, and performance
of the stated task based on the final image. This method is used to optimize the constrained Algebraic
Reconstruction Technique (ART), which reconstructs images from their projections under a nonnegativity
constraint by means of an iterative updating procedure. The optimization is performed by finding the
the relaxation factor, which is employed in the updating procedure, that yields the minimum rms error in
estimating the position of discs in the reconstructed images. It is found that the optimum operating points
for the best object localization are essentially the same as those obtained earlier when the performance of
simple object detection is to be optimized.

Introduction

Previously we showed how the evaluation of image- recovery algorithms could be based on how well the
resulting reconstructions allow one to perform the tasks set forth for the imaging system [1]. A technique that
permits one to numerically evaluate a task performance index for a specified imaging situation was proposed.
This technique consists of a Monte Carlo simulation of the entire imaging process including random scene
generation, data taking, reconstruction, and task performance. Accuracy is judged by comparison of the
results with the original scene. Repetition of this process for many possible scenes provides a statistically
significant estimate of the performance index that has been chosen to summarize the accuracy of the task
performance. Averaging over many scenes is important because artifacts in reconstructed images depend
on the scene being reconstructed. Thus a single realization of a simple scene is completely inadequate
to judge a reconstruction algorithm. The advantage of this numerical approach is that it readily handles
complex imaging situations, nonstationary imaging characteristics, and nonlinear reconstruction algorithms.
Its major disadvantage is that it provides an evaluation that is valid only for the specific imaging situation
investigated. More detail about this method can be found in [1].

An advantage of the Monte Carlo method of performance evaluation is that the reconstruction algorithm
may be optimized for any fixed number of iterations. Alternatively, the number of iterations may be varied to
achieve the optimum performance for algorithms that tend to diverge after many iterations. Such behavior
is observed in the EM (estimation maximization) algorithm [2,3] and, when data are inconsistent, some
implementations of the ART algorithm [4].

The above method to evaluate task performance has been used [5] to optimize the tomographic recon-
struction algorithm, constrained ART (Algebraic Reconstruction Technique) [4] with respect to detectability.
The object of that study was the relaxation factor, about which there is very little theoretical guidance. Two
parameters were used to control the behaviour of the relaxation factor as a function of iteration number. The
optimum operating point was found by searching for the combination that yields the largest detectability in-
dex d'. This optimization procedure demanded much higher relaxation factors than suggested by theory for
unconstrained ART. In [1] we demonstrated that in certain imaging situations the use of the nonnegativity
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constraint in the reconstruction process improved d' by almost a factor of three when nominal relaxation
factors were used. It was found that with optimization, di could be increased by another factor of ten.
The improvement in d' correlated well with visually estimated image quality. If the optimization of the
algorithm with respect to the common measure of reconstruction faithfulness, the rms difference between
the reconstruction and the original scene, were followed, considerably poorer detectability and perceived
image quality resulted.

We report on an extension of the previous work to the consideration of the performance of a higher
order task, namely estimation of object location. This extension is pertinent because the accuracy of object
localization depends on the higher spatial frequencies in the reconstruction, which are believed to dominate
the performance of other high -order tasks such as medical diagnosis [6].

Estimation of Object Position

The task of estimating the position of an object with known shape is performed using a minimum
chi- squared (x2) fitting procedure. It is known that this procedure is equivalent to maximum likelihood
estimation [7] when the noise is gaussian distributed and uncorrelated. For a set of measurements fi, x2 is
given by

x2 [ (fi - Ti(a))2
(1)L f

where pi(a) is the predicted value of the ith measurement for the parameter vector a and cri is the rms
noise in the ith measurement. The sum is over all the measurements that are to be included in estimating
the unknown parameters. The best fit to the data is obtained by finding the set of parameters a that
minimizes x2. The fitting algorithm we have used is essentially identical to the CHIFIT program presented
by Bevington [8] for fitting a nonlinear function of the parameters. For the task at hand, the estimation of
the location of a known signal, the predicted function pi is nonlinearly related to the position.

Algebraic Reconstruction Technique

The Algebraic Reconstruction Technique (ART) [4] is an iterative algorithm that reconstructs a function
from its projections. It has proven to be a very successful tomographic reconstruction algorithm, particularly
when there is a limited number of projections available. Assume that N projection measurements are made
of the unknown function f, which is considered a vector. The ith measurement is writeen as

gi =Hif, i= 1,...,N, (2)

where Hi is the corresponding row of the measurement matrix. The ART algorithm proceeds as follows.
An initial guess is made; for example, f° = O. Then the estimate is updated by iterating on the individual
measurements taken in turn:

f k+1 f k Ak HT gi -Hifk
HT Hi

where fk is the kth estimate of the image vector f, i = k mod(N)+1, and ak is a relaxation factor for the
kth update. In constrained ART a nonnegativity constraint is enforced by setting any component of f k }1

to zero that has been made negative by the above updating procedure. We use the index K to indicate the
iteration number (K = int(k /N)), which in the standard nomenclature corresponds to one pass through all
N measurements. We express the relaxation factor as

AK = ñ°(ra)K -1.

(3)

(4)

The proper choice of the relaxation factor is the issue at hand. There is very little guidance on this choice
in the literature. A value of unity is often suggested and used. It is known [9] that if a unique solution
to the measurement equations exists, the ART algorithm converges to it in the limit of an infinite number
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of iterations provided that 2 > A > O. If many solutions exist, ART converges to the one with minimum
norm. Censor et al. [10] have shown that unconstrained ART ultimately converges to a minimum -norm
least -squares solution if the relaxation factor approaches zero slowly enough. However, AK asymptotically
approaches zero for any value of rA < 1. The value appropriate for a finite number of iterations remains
uncertain. In previous work the author has assumed for Ao and rA the nominal values of 1.0 and 0.8 for
problems involving a limited number of projections, and 0.2 and 0.8 for problems involving many (N100)
views [1]. Next we discuss a way to find the best choice for the relaxation parameters for a specific problem.

Optimization of ART
Several classes of measures have been employed in the past on which to base the optimization of image -

recovery algorithms [ll]. Some are based on how close the reconstructed images are to the original image,
such as the conventional measure of the rms difference between the reconstruction and the original image,
simply called the rms error. This figure of merit may be convenient from a mathematical standpoint, but it
does not correlate well with the usefulness of reconstructed images. There are alternative measures based on
how closely the estimated reconstruction reproduces the measurement data, for example, the mean -square
residual. Unfortunately, without further constraints, reconstruction based on minimizing the mean -square
residual is known to be ill -conditioned or even worse, ill-posed [11]. We have proposed [5] that the most
meaningful measure upon which to optimize reconstruction algorithms is the ability to perform the kind of
task for which the imaging system was intended. We will use the following example to demonstrate how
this can be accomplished.

The numerically calculated task performance can be used to search for the optimum choice of Ao and
rA for the ART algorithm. For the present purpose, the scene is assumed to consist of a number of non-
overlapping discs placed on a zero background. For this example, each scene contains 10 high - contrast discs
of amplitude 1.0 and 10 low-contrast discs with amplitude 0.1. The discs are randomly placed within a circle
of reconstruction, which has a diameter of 128 pixels in the reconstructed image. The diameter of each disc
is 8 pixels. In this computed tomographic (CT) problem, the measurements are assumed to consist of a
specified number of parallel projections, each containing 128 samples. Ten iterations of ART are used in all
of the present examples. It is assumed that the task to be performed is the estimation of the positions of
the discs. To produce noisy data, random noise is added to the projection measurements using a Gaussian-
distributed random number generator. For a display of the kinds of scenes used in this study, please refer
to [1,5].

As mentioned above, estimation of the position the discs is performed using a minimum X2 fitting
technique. For the input measurements to the fitting procedure, we use the set of pixels in the reconstructed
image f that fall inside a circle with a radius 1.7 times the radius of the disc whose position is to be
determined. This circular fitting region is centered on the position of the disc being fit. The function fitted
to the data is a disc of variable amplitude with a linearly tapered edge, which is chosen to approximately
match the shape of the reconstructed discs. The background is assumed to be zero. In the fits performed
here, the radius and taper of the discs are held constant and the amplitude and the horizontal and vertical
position of each disc are allowed to vary. The rms noise in the measurements of is assumed to be constant.
For the performance index, we use the rms error in the estimated position of the discs, averaged over both
horizontal and vertical positions of all the discs of the same amplitude in all ten reconstructions. We refer
to this performance index as localizability and designate it as op. An inherent problem arises when the
presence of a disc is uncertain. In the present study when the fitted amplitude is less than 20% of the correct
value, we assume the disc is not reliably detected and simply replace the estimated position with a randomly
generated position located within the range of the data being fitted. However, such a strategy can lead to
a lack of continuity in the optimizing function, which can easily play havoc with any routine that is to find
the minimum of such a function.

Fig. 1 shows how various choices for optimization functions depend on Ao and rA for constrained ART
in one data -taking situation. The contours for o0 obtained by fitting the high - contrast discs are remarkably
similar to those obtained by fitting the low- contrast discs. In fact, these two optimization functions are
almost exactly an even factor of ten apart; that is, in the same ratio as their amplitudes. Thus it doesn't
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Figure 1: Contour plots of four optimization functions plotted as a function of the relaxation parameters A0
and ra used in the constrained ART reconstruction algorithm. The measurement data consist of 12 noiseless,
parallel projections spanning 180 °. The coarse sampling (10 x 10 points) of these functions, necessitated by
the lengthy computation time required for each function evaluation, accounts for the scalloping effects.
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Figure 1: Contour plots of four optimization functions plotted as a function of the relaxation parameters AO 
and r\ used in the constrained ART reconstruction algorithm. The measurement data consist of 12 noiseless, 
parallel projections spanning 180°. The coarse sampling (10 x 10 points) of these functions, necessitated by 
the lengthy computation time required for each function evaluation, accounts for the scalloping effects.
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matter which set of objects is used for position estimation. This fact is important because in some situations
the low -contrast discs are difficult to detect, giving rise to the problem described above of knowing how to
score such cases. Furthermore, these contours are quite similar to those for the optimization function based
on the detectability index, i. e. 100 /d'. Thus optimization with respect to any of these performance indices
yields the same operating point. Recall, however, the previous demonstration [5] that optimization based on
the rms error in the reconstruction resulted in more artifacts than optimization based on the detectability
index d

Figures 2 and 3 compare the optimization function based on localizablity to that based on detectability
for two other data -taking situations in which random noise is added to the projection data. In these cases
the contours of the two optimization functions are not nearly as identical in shape as they are in Fig. 1, but
they do show the same general trends. In Fig. 3 both 1 /d' and 74, show little dependence on Ao and similar
dependences on ra, but with different positions of the minima. In Fig. 2 the two functions have nearly the
same minima but demonstrate somewhat different characteristics in their dependence on the two variables.

The optimum values for Ao and r , are found for various conditions of data collection using a function
minimizer from the NAG libraryi called E04JBE. This routine finds the minimum of a function of many
parameters after numerous evaluations of the function. From 20 to 100 function evaluations are required
for the cases studied here in which just two parameters are varied. Table 1 tabulates the results obtained
previously with constrained ART for optimization with respect to the detectability of the low- contrast
discs. The nonnegativity constraint was found to be generally useful with the nominal relaxation factors,
particularly when the data are limited by the measurement geometry. Optimization produced even further
improvements in detectability. Very large relaxation factors are preferred, in fact much larger than might
be expected. However, when it is realized that the nonnegativity constraint has the effect of undoing the
agreement with each measurement that should result from an update, it seems reasonable that overrelaxation
is desirable. Neither the use of nonnegativity nor optimization has much benefit when the data are complete
but noisy.

The results of optimizing constrained ART with respect to the accuracy of position estimation are
presented in Table 2. As a general observation, optimization with respect to localizability yields very similar
operating points for Ao and ra. Furthermore, the factors by which improvement is made in the optimization
function by moving from the nominal relaxation parameters to the optimized ones is nearly the same for
each data -taking situation. It appears that the effect of artifacts on 1 /d' and crA are similar. Perhaps this
fact is a consequence of the randomization produced in the artifacts arising from the randomized placement
of the discs in the many scenes that are used to calculate the average performance index. Then the effects
of artifacts might be expected to behave similarly to those of additive random noise in the measurements.

The conclusions regarding the optimization with respect to localizability in unconstrained ART recon-
structions are essentially the same as those previously drawn about detectability. Relatively little improve-
ment in localizability is achieved by optimization compared to that obtained with the nominal relaxation
factors. In the noiseless cases, a value of unity for AK yields essentially the same results as the optimized
values, a choice that is in agreement with common practice. However, for noisy data it seems desirable for
rA to be less than unity and, when there are many views, Ao should be small. These choices are reasonable
as they promote significant averaging over all the views. As a rule of thumb, for noisy but complete data,
the relaxation factor should be approximately equal to the reciprocal of the number of views for the last few
iterations.

'Numerical Algorithm Group, 7 Banbury Road, Oxford OX2 6NN, UK
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factors. In the noiseless cases, a value of unity for A* yields essentially the same results as the optimized 
values, a choice that is in agreement with common practice. However, for noisy data it seems desirable for 
r\ to be less than unity and, when there are many views, A0 should be small. These choices are reasonable 
as they promote significant averaging over all the views. As a rule of thumb, for noisy but complete data, 
the relaxation factor should be approximately equal to the reciprocal of the number of views for the last few 
iterations.

Numerical Algorithm Group, 7 Banbury Road, Oxford OX2 6NN, UK
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Figure 2: Contour plots obtained with constrained ART for measurement data consisting of 100 parallel
projections spanning 180° containing random noise with an rms amplitude of 8.
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Figure 3: Contour plots obtained with constrained ART for measurement data consisting of 16 parallel
projections spanning 180° containing random noise with an rms amplitude of 2.
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Table 1: Summary of the effect of optimization with respect to the detectability index d' of the low- constrast
discs in reconstructions provided by constrained ART (repeated from Ref. [1]). Dramatic improvement in
detectability is seen to be possible when the measurement geometry limits interpretation of the reconstruction
rather than noise in the data.

number
proj.

AO
(deg.)

rms
noise

nominal
Ao r), d' Ao

optimized
r), d'

100 180 8 0.2 0.8 1.825 0.052 0.859 1.908
8 180 0 1.0 0.8 0.653 3.45 0.959 4.91

12 180 0 1.0 0.8 2.054 2.96 0.975 23.46
16 90 0 1.0 0.8 2.050 2.78 0.967 6.30
16 180 2 1.0 0.8 2.372 3.01 0.712 2.747

Table 2: Summary of the effect of optimization with respect to the localizability of the high - constrast discs
in reconstructions obtained with constrained ART. The object localizability oo is given in terms of pixels.

number
proj.

AO
(deg.)

rms
noise

nominal
Ao ra oo Ao

optimized
ra a

100 180 8 0.2 0.8 0.182 0.046 0.920 0.174
8 180 0 1.0 0.8 0.472 3.24 0.977 0.104

12 180 0 1.0 0.8 0.236 2.80 0.989 0.0277
16 90 0 1.0 0.8 0.426 2.41 0.998 0.149
16 180 2 1.0 0.8 0.160 2.93 0.811 0.130

Discussion

In many of the imaging situations studied, the optimization of constrained ART realized through a judi-
cious selection of the relaxation factor can significantly increase the localizability of objects, especially when
the data consist of a limited number of noiseless projections. For unconstrained ART, little improvement
can be achieved through optimization.

The accuracy of object localization for constrained and unconstrained ART, with and without optimiza-
tion, follows the same pattern found earlier for detectability. The optimization functions for the performance
of the tasks of position estimation and detection of low- contrast objects show similar trends as a function
of the two relaxation parameters Ao and ra. The optimum operating points in terms of these parameters
vary with the data -taking situation but they are nearly the same for both of these tasks. This conclusion is
perhaps a little surprising because the task of object localization is more dependent on the high- frequency
content of the image than is simple detection [6]. If the parameters being varied in the optimization had
separate effects on the modulation transfer function (MTF) and the correlation of the noise in the final
images, a different result might have been anticipated. Part of the explanation for the observed similarity
in the results is that, in the present case of image reconstruction, the resolution of the final images is not
affected much by the relaxation factors. On the other hand, the realization in the reconstruction of random
noise present in the projection measurements can be affected. Thus it is in the situations in which noise
is added to the measurements that we observe some differences in the optimization functions based on the
performance of these two tasks.
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rather than noise in the data.
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0.052 0.859 1.908
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Table 2: Summary of the effect of optimization with respect to the localizability of the high-cons trast discs 
in reconstructions obtained with constrained ART. The object localizability <r& is given in terms of pixels.
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16
16

A0
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180
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rms 
noise

8
0 
0
0
2

nominal 
AO r\ 0"A
0.2 0.8 0.182
1.0 0.8 0.472 
1.0 0.8 0.236
1.0 0.8 0.426
1.0 0.8 0.160

optimized 
AO r\ (TA

0.046 0.920 0.174
3.24 0.977 0.104 
2.80 0.989 0.0277
2.41 0.998 0.149
2.93 0.811 0.130

Discussion

In many of the imaging situations studied, the optimization of constrained ART realized through a judi­ 
cious selection of the relaxation factor can significantly increase the localizability of objects, especially when 
the data consist of a limited number of noiseless projections. For unconstrained ART, little improvement 
can be achieved through optimization.

The accuracy of object localization for constrained and unconstrained ART, with and without optimiza­ 
tion, follows the same pattern found earlier for detectability. The optimization functions for the performance 
of the tasks of position estimation and detection of low-contrast objects show similar trends as a function 
of the two relaxation parameters AO and r\. The optimum operating points in terms of these parameters 
vary with the data-taking situation but they are nearly the same for both of these tasks. This conclusion is 
perhaps a little surprising because the task of object localization is more dependent on the high-frequency 
content of the image than is simple detection [6]. If the parameters being varied in the optimization had 
separate effects on the modulation transfer function (MTF) and the correlation of the noise in the final 
images, a different result might have been anticipated. Part of the explanation for the observed similarity 
in the results is that, in the present case of image reconstruction, the resolution of the final images is not 
affected much by the relaxation factors. On the other hand, the realization in the reconstruction of random 
noise present in the projection measurements can be affected. Thus it is in the situations in which noise 
is added to the measurements that we observe some differences in the optimization functions based on the 
performance of these two tasks.
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It is possible that one may desire to optimize an imaging system with respect to the performance of
more than one task and that the individual optimization functions might not have the same minima. This
type of behavior is seen, for example, in Fig. 3. In such a case one can combine the various optimization
functions into a single grand optimization function by weighting each individual function appropriately. The
optimum operating point would strike a balance between the operating points that are best for each of the
constituent tasks.
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