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ABSTRACT
Suppose that it is desired to estimate certain parameters associated with a model of an object that

is contained within a larger scene and that only indirect measurements of the scene are available. The
optimal solution is provided by a Bayesian approach, which is founded on the posterior probability density
distribution. The complete Bayesian procedure requires an integration of the posterior probability over
all possible values of the image exterior to the local region being analyzed. In the present work, the full
treatment is approximated by simultaneously estimating the reconstruction outside the local region and the
parameters of the model within the local region that maximize the posterior probability. A Monte Carlo
procedure is employed to evaluate the usefulness of the technique in a signal-known-exactly detection task
in a noisy four-view tomographic reconstruction situation.

1. INTRODUCTION
Consider the problem of detecting a known object within a complex scene when given only indirect

measurements, such as projections of the scene. A standard solution would be to reconstruct the full scene
from the available data and then make the decision on the basis of how closely the reconstruction resembled
the known object. Although this approach is straightforward, it might not yield optimal detection.

Here we seek a computational method that yields optimal performance of the stated detection task.
The concept of such an 'ideal observer' has been useful in the past to help define the ultimate precision
with which one can interpret data of a given type [1,2,3,4,5,6]. We propose a fully Bayesian approach in
which the decision is based on the posterior probability. To achieve this solution, the reconstruction and
the object parameters must be estimated simultaneously to obtain a fully self-consistent Bayesian decision.

Examples of this Bayesian estimation procedure are presented in a computed tomographic situation
in which a nounegativity constraint on the image is incorporated. The performance of the comprehensive
Bayesian procedure is compared to that obtained by the traditional two-step approach using a Monte Carlo
simulation of the entire imaging process [7,8].

This work is founded on the Bayesian concepts developed by Gull and Skiffing and their colleagues
[9,10,11,12], albeit under the assumption of a Gaussian distribution for the prior probability rather than
their preferred entropic form.

2. THE BAYESIAN APPROACH
The foundation of reckoning in the Bayesian approach is the posterior probability, which is assumed to

summarize the full state of knowledge concerning a given situation. The posterior probability is assigned
the ultimate responsibility in making decisions about any hypotheses. Given the data set D, the posterior
probability of any hypothesis 7 is given by Bayes' law in terms of the proportionality

P('H21D) cx P(D1fl1)P(fl1) , (1)

where P(D1fl2), the probability of the observed data given hypothesis fl, is called the likelihood and
P(fl1) is the prior probability of hypothesis fl. The likelihood is specified by the assumed probability
distribution of the fluctuations in the measurements about their predicted values. The prior probability
P(fl1) encompasses the full prior information about the relative frequency of occurrences of all hypotheses.
Any known constraints concerning impossible hypotheses ought to be included explicitly or implicitly in
P(fl1).
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Making a binary decision is the simplest possible type of hypothesis testing, because there are just
two alternative models between which to choose. The best decision variable is the ratio of posterior
probabilities:

P(fliID) P(DI7-(i)P(7-(1) 2
P(fl2JD) P(D(fl2)P(fl2)'

Inherent in Bayesian analysis is the concept of cost functions, which state the relative importance of
making correct versus incorrect decisions for each state of truth. The above decision strategy codified by
Eq. (2) holds in the absence of asymmetric costs. When a continuum of possible outcomes exists, as in the
estimation of one (or many) continuous parameters, the best possible choice of parameter values depends
upon the type of cost function that is appropriate. It may be argued that for most general analyses,
the simplest rule is to find the parameters that maximize the posterior probability, which is called the
maximum a posteriori (MAP) solution [13,14].

We note that for an image containing N pixels, the MAP solution (or a reconstruction of any type)
corresponds to a singe point in an N-dimensional space. Any analysis based solely on such a reconstruction
must necessarily ignore the complexity of the full posterior-probability distribution, which corresponds
to a cloud in the same N-dimensional space. It is the correlations embodied in the posterior-probability
distribution that we wish to incorporate in the present analysis.

In many problems there exist parameters that may be necessary to fully describe the solution, but whose
values are of no interest. These unnecessary parameters can transform a simple hypothesis test into one
of testing composite hypotheses. In such cases the proper approach is to integrate the probability density
distribution over these unwanted variables. The result of this integration is called the marginal probability,
which simply means summing over the irrelevant parameters in the problem (the result presumably to be
written in the margin of the tally sheet).

2.1 Posterior Probability
We assume that there exists a scene that can be adequately represented by an orderly array of N pixels.
We are given M discrete measurements that are linearly related to the original image amplitudes. We
assume that these measurements are degraded by additive noise with a known covariance matrix R,
which describes the correlations that exist between noise fluctuations. The measurements can then be
represented by a vector of length M

g=Hf+n, (3)
where f is the original image vector of length N, n is the random noise vector, and H is the measurement
matrix. In computed tomography the jth row of H describes the weight of the contribution of image pixels
to the jth projection measurement.

Now, because the probability is a function of continuous parameters, namely the N pixel values of
the image, it is actually a probability density, designated by a small pQ. The negative logarithm of the
posterior probability is given by

— log{p(flg)] = 'i5(f) = A(f) + 11(f) , (4)
where the first term comes from the likelihood and the second term from the prior probabifity. For additive
Gaussian noise, the negative log(likelihood) is just half of chi-squared

— log[p(glf)] = A(f) = x2 (g — Hf)TR1(g Hf) , (5)

which is quadratic in the residuals. Instead of a Gaussian distribution assumed here, the Poisson distri-
bution is often a better model for expected measurement fluctuations. The choice should be based on the
statistical characteristics of the measurement noise, which we assume are known a priori.

The second term 11(f) comes from the prior-probability distribution. It should incorporate as much as
possible the known characteristics of the original image. Here we use a Gaussian distribution for the prior,
whose negative logarithm may be written as
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— log{p(f)] = 11(f) = (f — )TR—1(f i') , (6)

where is the mean and R is the covariance matrix of the prior-probability distribution. As we have
done before [15], we invoke the prior knowledge that the image f caunot haveany negative components by
instituting nonnegativity as a side constraint.

Another choice for prior that has been argued [11} to play a unique role for additive positive distributions
is that of entropy. The Bayesian approach does not hinge on any particular choice of prior. However, the
prior influences the outcome of the Bayesian procedure. For example, the strength of the prior afFects the
amount the reconstruction is biased away from the true image [16,17]. It is important for the researcher
to understand the characteristics of solutions obtained regardless of the prior chosen. It is recognized that
the prior provides the regularization essential to solving ill-posed problems [18,19], which arise because H
possesses a null-space [20,21].

2.2 Reconstruction Problem
In the reconstruction problem, we seek to estimate all pixel values in the orignal scene. The Bayesian
solution to this problem is the image that maximizes the posteriorprobability or, equivalently, minimizes
— log(posterior probability). For the unconstrained MAP solution f, it is necessary that

Vr= Rj:1(f—?) + HTR(g _ Hf) = 0 . (7)

However, under the constraint that the solution should be nonnegative (f2 � 0), Eq. (7) needs to be satisfied
only when f1 > 0; a negative gradient is permissible on the boundary f1 = 0. In computed tomography
(CT), the matrix operation HT is the familiar backprojection process.

A consequence of the prior is to bias the reconstruction away from the actual value in the original
image, which was studied by Hanson [16] in unconstrained tomographic reconstructions. The extent of the
bias depends on the relative weights of the two terms in Eq. (4). As the prior contribution vanishes the
result approaches the maximum likelihood (or least-square residual) solution.

2.3 Analysis of a Local Region
Suppose that we ask a different question: does an object exist at a specific location in the image? The rest
of the image is to be ignored. To address this question, we assume that within the image domain, a local
region V is to be analyzed for the possible presence ofan object. Inside V the image fis assumed to be given
by a model of the object described by a set of parameters a. Now the parameters in the problem are not
the full set of image values f, but rather ft, the image values in the disjoint exterior region ,and a. With
Bayes' law the posterior probabifity may be written as p(f, ag) p(glfe, a)p(f, a) o p(gf, a)p(f). In
the last step we have chosen to avoid explicit specification of a prior on a, allowing it to be implicitely
included in the prior for f.

As the new question regards only the region D, the image values ft outside V are irrelevant. The
Bayesian approach specifies that we integrate the posterior probabifities over the unwanted parameters
of the problem, namely over the image values outside V. If the problem at hand is to decide between
two possible sets of parameters, a1 or a2, the decision variable should be the ratio of the two marginal
posterior probabilities [13,14], or equivalently its logarithm

— 1 J'p(f,ajg)df
(8).,,_ og

where the integrals are to be carried out only over the external region e and include all possible image
values not disallowed by constraints. Within the context of Bayesian analysis, this decision variable logically
follows from the statement of the problem. Hence, we assert that it should yield optimal decisions. The
ideal observer uses Eq. (8) to make binary decisions regarding a local region.
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Under certain circumstances these integrals may be difficult to calculate accurately. However, when
dealing with the Gaussian prior- and likelihood-probability density distributions presented in Sec. 2.1,
we expect the posterior-probability density p(f, ag) to decrease rapidly away from a unique maximum.
Using fek to designate the image in the exterior region that maximizes the posterior probability for the
parameter set k, we are prompted to rewrite the above ratio as,

i/; = log (ei,aiIg)K(ai) (9)
p(fe2, a2g) K(a2)

where the phase-space factor is

K(ak)=
1

Jp(fe,aklg)df, (10)
p(fek,akg) e

which accounts for the extent of the spread in f-space of the posterior-probability density distribution
about its constrained peak value p(ftk, k Ig). Generally f1 f2 because a change in model parameters
describing the interior region alters the projections, implying that a different exterior image will minimize
the posterior probabifity. In many situations, however, replacing the local region of the MAP solution with
the model may have little effect on the predicted projection values. Then, p(f, ag) is independent of a
and, to good approximation, E = f62 = fe, so both K factors in Eq. (9) are the same and

t&=log p(E,aig)
(11)

p(fe, a2g)
In these situations, the decision variable can be given adequately by the change in the log(posterior prob-
ability) induced by replacing the MAP solution f in V with the two models, leaving the exterior region
anchanged.

For unconstrained solutions of Eq. (7), the K factor is independent of a, because the shape of the
Gaussian posterior-probability distribution is governed by the full curvature of çb, namely J1 + Rj1.
Then the K factors in Eq. (9) cancel and

tj,=log[P(Ee1a1I)]
. (12)

p(fe2, a2Jg)

The argument of the logarithm is called the generalized posterior-probability ratio. Equation (12) may
not be a good approximation to (8) for constrained solutions, as the contribution to the phase-space K
factor from the integral over each f2 depends on the relation of the peak in f to the constraint boundary.
Nonetheless, because of its simplicity, we use Eq. (12) and reserve for the future an investigation of a better
approximation.

To evaluate Eq. (12) for fixed parameter sets a1 and a, it is necessary to find the pair of exterior
images, fi and fE2, that maximize the posterior-probability density. In other words, one must find the
maximum a posteriori or MAP reconstruction in the exterior region with the image inside the local region
fixed by the parameter values. To extend the binary decision problem to one in which the model parameters
are to be estimated, it becomes necessary to simultaneously estimate the a parameters and reconstruct
the exterior region with the aim of minimizing the posterior probability.

2.4 Method of Solution
We employ the same iterative method described in [15] to find the constrained MAP solutions. Following
Butler, Reeds, and Dawson [22], the constrained solution is the positive part of the dual functional d:

(13)

f'=O ,d<O. (14)
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The first estimate is d° = f. The gradient of qS for the kth estimate,

Vr=rk=Rj(fc_f) + HTR(g_Hfc) (15)

is used to update dec: dc dk + cIrC (16)

where scalar CC is chosen to minimize k+1 This optimization procedure is essentially that of steepest
descent, which is known to be inefficient. Although a more rapid solution method probably exists, the
present one suffices for this study. It is found that 50 iterations are adequate for the present work.

To fit the parameters of the model in the local region, we also need the gradient of with respect to
the parameters for positive (negative) increments of a3

0k+() k Ofk
(17)

where the sum excludes pixels for which either d < 0 or d = 0, when the product of the partial derivatives
is positive for (+) or negative for (—). These contributions are excluded because they would move d further
into the domain of forbidden solutions and hence produce no change in fjc.

3. METHOD
We demonstrate the use of the Bayesian approach in making decisions about a local region in a recon-

structed image with a very simple example: detection of disks based on a very limited number of noisy
projections. This binary discrimination task is employed because it is theoretically tractable, it is easy to
perform the required decision-making procedure, and it is possible to summarize the results simply.

3.1 Monte Carlo Method to Evaluate Task Performance
The overall method for evaluating a reconstruction algorithm used here has been described before [7,8].
In this method a task performance index for a specified imaging situation is numerically evaluated. The
technique is based on a Monte Carlo simulation of the entire imaging process including random scene
generation, data taking, reconstruction, and performance of the specified task. The accuracy of the task
performance is determined by comparison of the results with the known original scene using an appropriate
figure of merit. Repetition of this process for many randomly generated scenes provides a statistically
significant estimate of the performance index [8].

3.2 Specifications of Detection Tests
The imaging situation is chosen in an attempt to maximize the possible effect of re-estimation of the
exterior region implied by the full Bayesian treatment. The original scenes contain either one or two
disks, all with amplitude 0.1 and diameter 8 pixels. The disks are randomly placed, but not overlapping,
within the circle of reconstruction of diameter 64 pixels. The background level is zero. Enough scenes are
generated in the testing sequence to provide 100 disks with amplitude 0.1 and 100 null disks to sample the
background region.

The measurements consist of four parallel projections, each containing 64 samples, taken at 45° lucre-
ments in view angle. Measurement noise is simulated by adding to each measurement a pseudorandom
number taken from a Gaussian distribution with a standard deviation of 2. The peak projection value of
one of the disks is 0.80. The signal-to-noise ratio (SNR) for signal-known-exactly (SKE) detection of a
disk may be easily calculated as the [ SNRJ1/2, summed over the measurements that subtend the disk,
which yields SNRdetcct d' 1.89. The overwhelming difficulty of this detection problem can be seen in
Fig. 1, which shows the first projection of the first scene. To avoid aliasing artifacts in the reconstruction,
the projection data used for reconstruction are presmoothed using a triangular convolution kernel with a
FWIIM of 3 samples. As a result, the expected rms noise value in the smoothed data is approximately
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Fig. 1. The measurements that comprise the first offour projections of the first scene containing two disks.

1.0. Thus for all cases studied we use the noise covariance matrix R = diag(4) = (1.0)2. With this
assumption we are ignoring the correlations in the data caused by presmoothing.

For the Gaussian prior probabifity distribution we employ the ensemble mean ?j = 0.0031 = constant,
which is the average value of the scenes containing two disks. We assume the ensemble covariance matrix
is diagonal with R1' = diag(o) and explore the effect of choosing different values of c.

The stated task is to detect the presence of the disks under the assumption that the signal is known
exactly (SKE) and the background is known exactly (BKE) in the 2D local region. The various strategies
for making this binary decision are presented in the next section. A useful measure to summarize the
performance of binary decisions is the detection index dA, which is based on the area under the Receiver
Operating Characteristic (ROC) curve. The ROC curve is obtained in the usual way [8] from the histograms
in the decision variable for the signal-known-present and the signal-known-absent tests. Once the ROC
curve is generated and its area A determined, then dA is found by dA = 2 erfc1{2(1 — A )}, where erfc'
is the inverse complement of the error function. There are good reasons for not using the detectabifity
index d ', which is based on the first and second moments of the histograms of the decision variable [23].
For a fixed number of binary tests, the relative statistical error in dA is smallest when dA is about 2.2 [8].
The imaging situation should be arranged to keep dA roughly between 1 and 3.5 to optimize the statistical
value of the testing procedure.

3.3 Decision Strategies
For the simple binary discrimination tests performed here, only two parameters are needed to describe the
model for the local region — the background level and the disk amplitude relative to the background. The
background is assumed to be constant. The position and diameter of the disk are assumed to be known.
The edge of the disk is linearly ramped over 2 pixels in radius to roughly match the blur caused by the
reconstruction process. The local region of analysis is assumed to be circular with a diameter of 14 pixels
and centered on the test position. When the disk is assumed present, the amplitude is set to 0.1 and when
assumed absent, 0. The background level is 0 for both tests. In all of the decision strategies, a decision
variable is evaluated for each of the two hypotheses and the difference between the two values is used to
make the decision whether a disk is present or not.
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Fig. 2. This composite image shows the process used to make the binary decision whether a disk is
present or not. The original scene (upper left) is reconstructed from four projections using constrained
maximum a posteriori reconstniction (upper right) with ensemble standard deviation O!f 1. Totest the
possible presence of a disk, that disk is placed into the reconstruction (lower left) and then the image
outside the local region of the disk is 're-reconstructed' to obtain the image (lower right) that maximizes
the posterior probability with the disk present. This procedure is repeated with the same region replaced
by the background value (zero) and the difference in the logarithms of the two posterior probabilities is
used as the decision variable.

The following decision strategies are employed in this study:

Method A) In the simplest possible approach, one uses the projection data directly. The decision is based
on the difference in x2 for the two hypotheses. Explicitly, Eq. (5) is evaluated under both hypotheses using
for f oniy the model values inside the local region of analysis V. The image values outside the analysis
region are iinplicitely assumed to be zero. If the background is truly zero and only one disk is present in the
scene, this decision variable operates at the statistical limit attainable in the absence of prior information.
However, it is obviously deficient for complex scenes as it ignores the contributions to the projections
arising from features outside the local region.

Method B) By Bayesian reckoning, the best possible decision variable for local analysis is given by Eq. (8).
For this method we use the approximation given by the generalized posterior-probability ratio Eq. (12),
which implies that for each choice of parameters the exterior region is reconstructed to maximize p(f6,ag).
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Fig. 3. Contour plots showing the correlation in — log(posterior probability) for fluctuations in two pixel
values about the MAP solution. These results are shown for two different assumed values of the ensemble
standard deviation cf; 0.2 (left) and 1.0 (right) for which the contour spacing is 0.01 and 0.05, respectively.
The first pixel is centered on the lower middle disk in the first scene (Fig. 2) and the other is three pixels
down and three pixels to the left of the first.

In actual practice, this second reconstruction step follows a preliminary constrained MAP reconstruction
of the whole image as pictorially described in Fig. 2.

Method C) This method uses Eq. (11) for the decision variable based on the posterior-probabifity dis-
tribution associated with the MAP reconstruction. Readjustment of the reconstruction external to the
analysis region for each test hypothesis is not required. This method was introduced by Gull and Skiffing
[12] and studied by Myers and Hanson [17] for an entropy prior.

Method D) Method D proceeds from the constrained MAP reconstruction MAP from the data. The
decision variable is taken as the difference in If — i'MAP 2 for the two models hypothesized for the local
region. This method was used by Hanson and Myers [15] to compare performance of the Rayleigh task
using MAP reconstructions based on Gaussian and entropy priors. It corresponds to using a likelihood
approach based on the reconstruction in which the noise fluctuations in the reconstruction are assumed to
be uncorrelated and Gaussian distributed. This method therefore ignores the correlations in the posterior-
probability distribution, shown in Fig. 3, that are incorporated to various degrees by methods B and C.

Method E) Method E also proceeds from the constrained MAP reconstruction MAP• Unlike the preceding
methods, the amplitude and background are varied to find the combination of values that minimizes
I — MAP 12, ji this fitting process, both the relative amplitude and the background are constrained to
be nonnegative. The amplitude so determined is used as the decision variable. This method was used by
Hanson in many earlier studies [7,24,25,26,8,16]. It is closely related to the non-prewbitening matched filter,
which is optimal when the fluctuations in the reconstruction are uncorrelated and Gaussian distributed.

A human observer viewing a reconstruction does not have access to the posterior probabifity distribution
and thus may have to resort to employing a decision method similar to D or E.
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Fig. 4. Scatter plot showing — log(posterior probability) calculated using Eq. (12) for the two separate
hypotheses; (1), a disk is present and (2), no disk is present. The vertical bars correspond to tests made at
sites where disks are actually present and horizonal bars where no disk is present. The degree of separation
between the two clouds indicates the ability to detect the disks. The difference between the ordinate and
abscissa values is the decision variable for method B. This result is for two disks per scene and o= 0.2.

4. RESULTS
A constrained MAP reconstruction of the first scene of the testing sequence for two disks is shown

in Fig. 2. Because of the noise in the projection data, the presence of the disks in the original scene is
obscured in the reconstruction. An interesting aspect of the posterior-probability approach is that one
may calculate the probability of a disk being present at any location in the reconstruction. Even though
the reconstruction might be zero (the lower limit decreed by the constraint of nonnegativity) throughout
a certain region, the probability of a disk being present in that region is finite and calculable. By contrast,
any analysis method based solely on the reconstruction would not be able to distinguish two different
regions that are completely zero. This point is emphasized by the contour plots in Fig. 3, which show the
behavior of the posterior-probability distribution when the values of two nearby pixels are varied. En both
cases the MAP solution for one of the pixels is zero, although both pixels actually faLl within a disk in the
original scene and should have the value 0.1.

Figure 4 shows the distributions of the two components of the decision variable used in method B
obtained for the two hypotheses (disk present and disk absent). The two clouds formed for each state of
truth have an approximate Gaussian shape. The decision variable for this method is the difference between
the ordinate and abscissa values.

The test sequences generated to demonstrate the use of posterior probability in decision making are
analyzed for several different values of the ensemble covariance matrix o. As we have found before
{15,16,25,26,17J, the performance of visual-like tasks usually varies with the parameters that control the
rms residual achieved by the reconstruction algorithm. For the present MAP algorithm, that parameter
is the ratio Of/O. Recall that o is fixed at its expected value of 1.0. For = 0.1, 0.2, and 1.0,
the rms residuals of the constrained MAP reconstructions of the single-disk scenes are 0.84, 0.80, and
0.76, respectively. As expected, the bias in the reconstructions also depends on o. The disk amplitudes,
measured as the average value over each disk relative to the average over its surrounding annulus (essentially
method E), are 0.007, 0.014, and 0.025, for the same o sequence. These are far from the actual value of
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Table 1. Summary of detectabilities obtained using different methods to analyze an identical data set
derived from 100 separate scenes each containing a single randomly placed disk. These results are presented
for rms noise = 1, but for different assumed values of c.

Method Decision variable
dA

o' = 0.1 o' = 0.2 o 1
A L.tx2

(use_data_only)

1.98 same same

B zMog(posterior probability)
( exterior re-estimated_)

2.11 2.07 1.95

C Mog(posterior probability)
(exterior_fixed_at_1MAP)

2.11 2.04 1.95

D iIf_EMAPI2
( use reconstruction_only)

1.88 1.73 1.57

Table 2. Summary of detectabilities obtained by analyzing data derived from 50 separate scenes with two
disks placed randomly in each scene. Assumed are = 1 and a variety of o values.

Method Decision variable
dA

a = 0.02 o = 0.1 O 0.2 1

A L':tX2

(use_data_only)

1.75 same same same

B iMog(posterior probability)
(exterior_re-estimated)

1.80 1.87 1.82 1.74

C Eilog(posterior probability)
(exterior_fixed_at_IMAP)

1.81 1.87 1.81 1.70

D If— fMAPI2
( use reconstruction_only)

1.80 1.76 1.67 1.47

E z(&sk amplitude)
(constrained fit to If — MAP I)

1.01 1.09 1.01 0.96

0.10, probably because there are so few views, giving rise to a gigantic nufl space [21], together with so
much noise. The MAP algorithm based on a Gaussian prior with j = 0, which is nearly the case here,
amounts to using minimum-norm regularization. Therefore, control of the noise, which dominates the
reconstructed field, can only be effected by reducing the sensitivity of the reconstruction.

Tables 1 and 2 summarize the detectability results obtained in the tests described above. The absolute
statistical accuracy of these dA values is about 0.25. The dA value for the single-disk scenes based on
using just the measurement data (Method A) is 1.98, in good agreement with the value of 1.89 estimated
in Sec. 3.2. As only the prior is involved, this value is independent of o. The dA value obtained with
the same method in the two-disk tests is 1.75, but the decrement relative to the single-disk tests may not
be statistically significant because the two test series involve different randomized data sets. Much better
accuracy should prevail in comparisons within each table, however, because they are obtained by analyzing
the exact same data sequence. We observe similar trends in both tables to remarkable accuracy. First of all,
both methods of using the posterior probability (methods B and C) provide nearly the same detectability
over a large range of a values. Perhaps this consistent behavior stems from the ability of the posterior
probability to fully retain the available information even though u' changes. There seems to be little
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advantage to re-estimation of the exterior of the local region to minimize the posterior probability implied
by Eq. (12) in this imaging situation. There is a trend toward better detectability as oget smaller. The
force of regularization imposed by the prior is overwhelming at o = .02. For example, the average disk
amplitude there is 0.0005 and the reconstruction values lie between 0.0005 and 0.0046; the nonnegativity
constraint is not even engaged.

The methods based on the posterior probability yield sightly better ( 10%) detectabilities than method
D, which is based only on the reconstruction under the assumption that the noise uncertainty is uncorrelated
and stationary. Basing the decision on the estimated disk amplitude (method E) greatly ( 45%) reduces
detectability compared to the other methods.

For unconstrained MAP with c = 0.1, the dA values for the single-disk test series are 2.10 (method
B) and 2.08 (method C). These values are nearly the same as those in Table 1, so the nonnegativity
constraint has little effect on detectability in the present situation. In previous work involving a limited
number of views, we have seen remarkable improvements in detectability wrought by the nonnegativity
constraint [7,24,25,8]. Although the less efficient method E was used in those studies, the principle reason
for the ineffectiveness of nonnegativity in the present case is that it is more limited by noise than by the
null space. The large amount of noise is used here to limit dA within the range of reasonable accuracy as
discussed in Sec. 3.2. The effects of artifacts were enhanced in previous studies by adding several disks
with large amplitude to the scene.

The dA value obtained from unconstrained MAP reconstructions (o = 0.1) by method D is 2.07.
The sizable gain in detectability over the result presented in Table 1 for constrained reconstructions, 1.88,
may be explained by the close relationship between method D and a likelihood approach applied to the
reconstruction. Such an approach is more likely to be valid when the reconstruction is not constrained.

5. CONCLUSION
We have compared several methods for detecting small disks in tomographic reconstructions. The worst

performance is provided by method E in which the amplitude obtained by fitting the MAP reconstruction
is used as the decision variable. This choice is the same as the matched filter for uncorrelated, Gaussian
distributed noise fluctuations, so it is more appropriate for unconstrained reconstructions than than for
constrained reconstructions. A better decision variable is the mean-square difference between the model
and the reconstruction f — MAP 2, as it is similar to a log(likellhood ratio), again ignoring correlations
in the reconstruction fluctuations. This method provides much better results. The best detectabilities
is achieved by basing decisions on the calculated posterior probability, which takes fully into account the
information contained in the measurements as well as in the prior knowledge. In the present tests, however,
there seems to be little benefit in re-estimating the exterior region. The full Bayesian treatment codified
by Eq. (8) is expected to represent the ideal observer.
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