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Mo+va+on	
  
•  Overwhelming	
  

evidence	
  of	
  dark	
  
ma2er	
  presence	
  in	
  
the	
  universe	
  

•  All	
  observa+on	
  based	
  
on	
  gravita+onal	
  
interac+ons	
  only	
  

⌦DM ⇡ 0.22



Mo+va+on	
  

•  We	
  know	
  that	
  Dark	
  Ma2er	
  exists	
  through	
  its	
  
gravita+onal	
  interac+ons	
  

•  We	
  do	
  Not	
  know	
  what	
  it	
  is	
  made	
  of	
  

•  Expand	
  Standard	
  Model	
  with	
  some	
  new	
  par+cles	
  
(SUSY,	
  Extra	
  dimensions,	
  Technicolor,	
  etc)	
  

•  Modified	
  gravity	
  laws	
  

Possible	
  explana+ons	
  for	
  DM:	
  



The	
  “WIMP	
  miracle”	
  

(1) 	
  A	
  new	
  heavy	
  par+cle	
  is	
  in	
  thermal	
  	
  
Equilibrium	
  
	
  
(2)	
  Universe	
  cools	
  down	
  

	
  
(3)	
  Dark	
  ma2er	
  species	
  freeze	
  out	
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Search	
  for	
  non-­‐gravita+onal	
  	
  
DM	
  interac+ons	
  

•  Produce	
  at	
  LHC	
  
•  Indirect	
  detec+on	
  

• Direct	
  detec+on	
  

��

f f

•  In	
  this	
  talk	
  we	
  focus	
  on	
  DM	
  sca2ering	
  off	
  a	
  Nucleus	
  
•  WIMP-­‐quark	
  interac+on	
  leads	
  to	
  the	
  WIMP-­‐Nucleus	
  
interac+on	
  



The	
  Large	
  Underground	
  Xenon	
  Experiment	
  (LUX)	
  

m� ⇠ GeV� TeV

v� ⇠ 10�3

ER ⇠ 10� 100KeV

Dark	
  Ma2er	
  Direct	
  Detec+on	
  
300	
  kg,	
  liquid	
  Xe	
  

First	
  data	
  released	
  at	
  the	
  end	
  of	
  2013	
  



Direct	
  Detec+on	
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  (Isospin-­‐conserving	
  DM)	
  

Isospin dependent WIMP couplings beyond leading order

Vincenzo Cirigliano, Michael L. Graesser, Grigory Ovanesyan, Ian M. Shoemaker
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract

Models with isospin-dependent dark matter couplings have been proposed as a viable scenario to reconcile conflicting
positive and null results from direct detection dark matter experiments. We show that the lowest-order dark matter-
nucleus scattering rate can have large and nucleus-dependent corrections at next-to-leading order (NLO) in the chiral
expansion. The size of these corrections depends on the specific couplings of dark matter to quark flavors and gluons.
In general the full NLO dark-matter-nucleus cross-section is not adequately described by just two nucleon parameters,
namely the proton-to-neutron coupling ratio and the single-nucleon cross-section. These statements are illustrated in a
scenario where the dark matter couples to quarks through scalar operators. In this context we also find new regions of
the proton-to-neutron coupling ratio that can reconcile the tension between the null XENON results and recent CDMS
findings.

1. Introduction

In this paper we study the e↵ect of chiral NLO corrections to WIMP-nucleus cross section. If we divide the
possible scenario of DM coupling to nucleus into isospin-conserving and isospin-violating, as is known in the former
case XENON experiment excludes all other signals like CDMS, CoGeNT, DAMA, while in the later case there is a
somewhat fine-tuned regime of the parameter space around f

n

/ f

p

= �0.7 that can reconcile the null results of XENON
with signals in other experiments. This second scenario is called isospin-violating DM.

The chiral nuclear (long-distance QCD) corrections to WIMP-nucleus cross section have been studied in Ref. [1].
The summary of the results in that reference is that for generic isospin-conserving WIMP-quark interactions the
magnitude of the NLO e↵ect is of the usual order due chiral power counting ⇠ m⇡/(1GeV) ⇠ 10%. However in the
cases of isospin-violating DM, in particular such that the signal for XENON is fine-tuned to zero it was found that the
chiral corrections wash out the cancelation generically.

It is the purpose of this paper to study the e↵ect of NLO corrections for both isospin-conserving and violating
cases on phenomenology for direct DM detection experiments. We focus for concreteness on reconciling the null
results from XENON experiment with signal observed at CDMS.

2. Setup

At leading order the WIMP-nucleus di↵erential rate equals to:
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where r = f

n

(0)/ f

p

(0) and we substituted �
p

= 2 k

X

µ2
f

p

(0)2/⇡. The parameter k

X

= 1/2 for Dirac fermions and
k

X

= 2 for Majorana fermions.
At next-to-leading order the WIMP-nucleus di↵erential rate equals to [1]:
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Isospin	
  viola+on	
  from	
  SM	
  running	
  

2

the DM particle � and SM fields are mediated by heavy
messenger particles with masses of order ⇤ >⇠ 1TeV.
Upon integrating out the heavy mediators, the UV com-
plete model is matched at the scale ⇤ onto what we call
“SM� EFT”, an e↵ective field theory (EFT) whose dy-
namical degrees of freedom are � and the SM fields. The
resulting e↵ective Lagrangian has the schematic form

LSM� =
X

d>4

L(d)
SM�

, L(d)
SM�

=
X

↵

C(d)
↵ O(d)

↵ . (1)

Here, ↵ runs over all possible operators of dimension d al-
lowed by the SM gauge symmetries, which are suppressed
by powers of the EFT cuto↵ scale ⇤ as 1/⇤d�4. The Wil-

son coe�cients C(d)
↵ are dimensionless, in general scale

dependent, and encode unresolved dynamics at higher
scales. DM stability forbids operators with just one DM
field, and we do not need more than two � fields for
our study. By applying Fierz identities, each operator
can be expressed as the product of a DM bilinear and
a SM-singlet operator built only with SM fields. A ba-
sis of operators for DD is obtained following the same
procedure described in [30, 31] for pure SM fields. In
what follows, we focus on operators up to dimension 6
generated at the matching scale ⇤, and consistently and
systematically derive their e↵ects for DD.
At the matching scale where SU(2)L is unbroken, three

e↵ective operators contribute to DM–nucleon scattering
at d = 5, i.e. the magnetic and electric dipole operators

OT
M =

1

⇤
�̄�µ⌫�Bµ⌫ , OT

E =
i

⇤
�̄�µ⌫�5�Bµ⌫ (2)

and the Higgs operators

OS
HH =

1

⇤
�̄�H†H , OP

HH =
i

⇤
�̄�5�H†H . (3)

Bµ⌫ and H are the U(1)Y field strength tensor and the
SM Higgs doublet, respectively. At d = 6, tree-level ex-
change of messengers can generate interactions between
DM currents and either quark1 or Higgs currents2

OIJ
qq =

1

⇤2
�̄�µ

I� q̄ �J,µ q ,

OI
HHD =

i

⇤2
�̄�µ

I� [H† !D µH ] , (4)

where q runs over the quark flavors, while I and J stand
for either V or A, with �µ

V = �µ and �µ
A = �µ�5. We

define H† !D µH ⌘ H†(DµH) � (DµH)†H. These are
all operators at the scale ⇤ up to dimension 6 that can

1 DM interactions in which lepton couplings are dominant are not
considered here.

2 The Wilson coe�cients of left-handed up and down quarks must
be identical at the scale ⇤ to respect SU(2)L gauge invariance.

contribute to the SI cross section. We now investigate
their e↵ects on the DD rates.

In the e↵ective Lagrangian for elastic WIMP–nucleon
scattering, the heavier SM fields (Higgs, W and Z bosons
and t, b, c quarks) have to be integrated out and the
Higgs’ VEV gives rise to quark masses. Therefore,
among the operators above only OV V

uu,dd enter directly

the SI cross section while threshold corrections from the
dimension-5 OS

HH generate dimension-7 scalar contribu-
tions. The DM–nucleon SI cross section accordingly
reads (cf. [14, 21, 32, 33])

�SI
N =

m2
� m2

N

(m� +mN )2 ⇡⇤4

����
X

q=u,d

CV V
qq fN

Vq

+
mN

⇤

✓ X

q=u,d,s

CSS
qq fN

q � 12⇡CS
gg f

N
Q

◆����
2

, (5)

with mN denoting the nucleon mass, and scalar (vector)
couplings fN

q (fN
Vq
). For heavy quarks, the parameter fN

Q

is induced by the gluon operator as discussed in [34], see
also [33]. Here,

OS
gg =

↵s

⇤3
�̄�Gµ⌫G

µ⌫ , OSS
qq =

mq

⇤3
�̄� q̄q , (6)

with Gµ⌫ denoting the gluon field strength tensor. In the
next section we will discuss how the Wilson coe�cients
of the operators in Eq. (2), Eq. (3) and Eq. (4) at the
high scale ⇤ are evolved down to the scale of DD and
how they are connected to the Wilson coe�cients of the
low-scale operators in Eq. (6).

Threshold corrections and mixing. At dimension 5,
OT

M , OT
E and OS,P

HH do not mix into other operators since
they are the lowest dimensional ones, and therefore only
threshold corrections have to be computed. The Z boson
in Bµ⌫ , once integrated out, generates OV V,V A

qq at dimen-
sion 6. The photon field is also encoded in Bµ⌫ but it is
a degree of freedom of the low-energy theory, and the
resulting long-range interaction between � and nucleons
severely constrains the Wilson coe�cient of the dipole
operator [35–37]. The Higgs operator OS

HH gives rise to
OSS

qq after EW symmetry breaking, and upon integrating
out the heavy quarks also the dimension-7 interaction
with the gluon field strength OS

gg is generated, see Fig. 1.
This leads to the following threshold corrections

CS
gg =

1

12⇡

⇤2

m2
h0

CS
HH , CSS

qq = � ⇤2

m2
h0

CS
HH , (7)

whose form shows that the OSS
qq contribution induced by

tree-level Higgs exchange is enhanced since it scales like
1/(⇤m2

h0) instead of 1/⇤3. Typical scattering cross sec-
tions involving DM e↵ective couplings to the SM Higgs
boson (like CS

HH) are in the ballpark of current exper-
imental limits [38–42]. They may also contribute to
mono-Higgs production at colliders [43], and for light

3

g

g
v

�̄

�

OS
HH

t

h0

q

q̄
�̄

�

OS
gg

g

g

FIG. 1: Left: Matching correction from the dimension-5 Higgs
operator to the dimension-7 gluon operator. Right: QCD
mixing of the gluon operator OS

gg into OSS
qq .

enough DM (m� < mh0/2) to the invisible Higgs decay
width [44–47].
The evolution matrix for the operators defined in

Eq. (6) only contains one non-vanishing o↵-diagonal en-
try, namely OS

gg mixes with OSS
qq . Using Eq. (7), we find

CSS
qq (µ0) =


1

12⇡

⇣
U (5)
mb,mt

+ 2 U (4)
µ0,mb

⌘
� 1

�
⇤2

m2
h0

CS
HH ,

(8)

where the evolution factor is given by

U
(nf )
µ,⇤ =

�3CF

⇡�0

ln
↵s (⇤)

↵s (µ)
. (9)

Here, nf is the number of active flavors, �0 = 11 � 2
3nf

and CF = 4/3. The mixing between OSS
qq and OS

gg (see
Fig. 1) has already been calculated in [21, 24, 27, 48].
We find that this has a numerically negligible impact on
�SI
N . The reason is that it yields a contribution to CSS

qq

proportional to CS
gg but the e↵ect of CS

gg in the cross
section is enhanced by a factor of 12⇡ compared to the
scalar contribution (see Eq. (5) and the analysis of the
QCD trace anomaly in [34]).
Let us now turn to the dimension-6 operators (see

Eq. (4)). Since we focus on SI interactions, only vector
DM bilinears are relevant. Concerning quark currents, no
QCD renormalization e↵ect has to be taken into account:
singlet quark vector currents are conserved under strong
interactions and there is no one-loop RG contribution
from the axial anomaly. However, EW corrections give
rise to an interesting e↵ect which has not been consid-
ered so far, namely the mixing of OV A

qq into OV
HHD, which

a↵ects DD rates. 3 There are six diagrams contributing
to this mixing, two of which are shown in Fig. 2. The
result is proportional to the mass of the quark in the
loop, i.e. to the Yukawa couplings Yq, and it is therefore
dominated by the top quark and to a less extent by the

3 In the DM axial-current sector there is an analogous mixing be-
tween OAA

qq and OA
HHD. Since this only a↵ects SD scattering, it

is not relevant for our study. However, for Majorana DM cou-
pling mostly to heavy quarks it can be an important e↵ect.

�

�

OVA
qq

q

W i, B

H

H

�

�

OVA
qq

q

W i, B

H H

FIG. 2: Diagrams responsible for the mixing of OV A
qq into

OV
HHD. Graphs originated by crossing or reversing the

fermion flow are not displayed.

bottom quark. Solving the RG equation, we obtain

CV
HHD (µ) = CV

HHD (⇤) +
↵t

2⇡
ln

µ

⇤
CV A

tt (⇤)� (t ! b)

(10)

with ↵t = Y 2
t /(4⇡). The relative sign di↵erence between

the last two terms is due to the fact that left-handed up-
and down-type quarks have opposite eigenvalues of the
third weak-isospin component. Here we keep only the
top and bottom contributions to the loop. In applying
this result, µ should be identified with the EW symmetry
breaking scale, where the top and the Z are integrated
out and the corresponding logarithm is frozen. A non-
vanishing value of CV

HHD generates a finite threshold cor-
rection to OV V

qq and OV A
qq at the EW symmetry breaking

scale by attaching a quark pair and integrating out the
Z boson:

CV V
uu ! CV V

uu +
1

2
CV

HHD , CV V
dd ! CV V

dd � 1

2
CV

HHD ,

CV A
uu ! CV A

uu � 1

2
CV

HHD , CV A
dd ! CV A

dd +
1

2
CV

HHD . (11)

Combining Eq. (11) and Eq. (10), we find

CV V
uu (µ) = CV V

uu (⇤) +
1

2
CV

HHD(⇤) (12)

+
lnµ/⇤

(4⇡)2
�
Y 2
t C

V A
tt (⇤)� Y 2

b C
V A
bb (⇤)

�
,

CV V
dd (µ) = CV V

dd (⇤)� 1

2
CV

HHD(⇤)

� lnµ/⇤

(4⇡)2
�
Y 2
t C

V A
tt (⇤)� Y 2

b C
V A
bb (⇤)

�
,

which means that a quark vector current is generated at
the low scale, even if at the high scale there is only an
axial-vector current. As an application of our results, in
the next section we will present limits on the Wilson coef-
ficient CV A

qq , previously bounded only by collider searches
(see e.g. [49]).

We now consider the mixing between vector operators
of heavy and light quarks obtained by attaching to the
quark loop a photon which couples to a quark pair. Since
only u- and d- quarks contribute to the scattering cross
section, this can be used to constrain all quark vector cur-
rent operators with heavier quarks (q = s, c, b, t). This

4
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"
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e
V
"

FIG. 3: Lower bounds for allowed regions from LHC
searches [49] (dashed, orange) and SI WIMP–nucleon scat-
tering from XENON100 (solid, green) [51] and LUX (solid,
red) [52]. Projected allowed regions for SCDMS [53] (dot-
dashed, purple) and XENON1T [54] (dot-dashed, blue) are
also shown, as well as the curve giving the correct thermal
relic density (thin, black). Here we set CV A

qq = 1 while all
other Wilson coe�cients are assumed to be zero.

is relevant in the case of non-universal DM-quark cou-
plings. Depending on the number of active flavors, the
pertinent RG equation reads

d ~C(µ)

d lnµ
=

↵s

4⇡
�0 ~C(µ), ~C =

 
~CV V
dd

~CV V
uu

!
, (13)

�0 =

0

BBB@

[�8/27]nd⇥nd
[16/27]nd⇥nu

[16/27]nu⇥nd
[�32/27]nu⇥nu

1

CCCA
. (14)

Here, ~CV V
dd and ~CV V

uu are vectors in flavor space whose
dimension is determined by the number of active flavors,
and [a]nd⇥nd

stands for a nd ⇥ nd matrix with all entries
equal to a. A similar mixing induces DM couplings to
lepton currents which can play a significant role in struc-
ture formation [50]. For DM coupling only to leptons,
constraints from DD are induced by similar loops e↵ects
as the one considered here [17, 19].

Numerical Analysis. We use our results to put con-
straints on Wilson coe�cients that have not yet been
bounded from direct searches. We first consider the sce-
nario where CV A

qq is the only non-vanishing Wilson coef-
ficient at the cuto↵ scale ⇤, and assume flavor-universal
DM–quark couplings. The regions in parameter space al-
lowed by various experiments are shown in Fig. 3, where
the matching scale ⇤ is plotted as a function of the DM
mass for CV A

qq = 1.4 If loop e↵ects are neglected, this

4 In the standard notation of [13], our operator OV A
qq corresponds

operator generates a scattering amplitude which is both
SD and velocity suppressed. For this reason, the best
bound before our analysis came from collider searches
(see e.g. [49]), corresponding to the dashed orange line in
Fig. 3. The RG induced contribution of CV A

qq to CV V
dd,uu

allows us to equally well constrain this operator from SI
measurements. In order to use the experimental bounds
on the WIMP–nucleon cross section given in [51, 52],
we have to take care of the fact that these limits were
obtained under the assumption of negligible isospin vi-
olation. However, as we see from Eq. (12), our loop
contribution to CV V

qq is maximally isospin violating, i.e.
�CV V

uu = ��CV V
dd . Therefore, our WIMP–nucleus cross

section is proportional to (2Z �A)2 while in the isospin-
symmetric case it scales like A2 (where Z and A are the
atomic and mass numbers of the target nucleus, respec-
tively). The regions allowed by DD measurements are de-
limited by the green (XENON100) and red (LUX) lines.
These bounds are comparable with the ones from LHC
searches. We also study the impact of future SI measure-
ments, and show the projections for the allowed regions
from SCDMS [53] (purple) and XENON1T [54] (blue).
Remarkably, upcoming experiments will be able to put
constraints that are much stronger than the ones from
the LHC. We also superimpose the line obtained by re-
quiring a OV A

qq dominated thermal freeze-out and observe
that upcoming experiments will be able to rule out ther-
mal relic up to m� ' 200GeV (for CV A

qq = 1). In the
study of future collider mono-jet searches in Ref. [55],
no constraint was derived for CV A

qq . Arguing by analogy
with the projected limits on CV V

qq [13], we find that DD
will allow us to derive stronger bounds on ⇤ compared
to LHC14, at least in the region of moderate and large
WIMP masses.

In the SM� EFT, it is possible to assume that CV A
qq 6= 0

and CV
HHD = 0 only at one fixed scale (in Fig. 3, this

scale is ⇤). We extend our analysis to the case where
also OV

HHD (and OV V
qq ) is switched on, and we use the

matching corrections in Eq. (11) to discuss the e↵ect in
terms of an e↵ective CV V

qq at the matching scale ⇤. In
Fig. 4 we show the parameter space regions allowed by
LUX in the (CV V

qq , CV A
qq ) plane for di↵erent values of ⇤.

Any UV complete model generating only (axial-)vector
operators must respect these bounds.

As already pointed out, our loop corrections to CV V
uu,dd

maximally violate isospin symmetry. Since SI rates do
not just scale with A2, we consider two di↵erent target
nuclei commonly used in DD experiments, namely xenon
and germanium. Our isospin-breaking e↵ect induced by
vector operators is shown by evaluating the ratio between
the squared matrix elements, each normalized by the cor-

to D7 with M⇤ = ⇤/
q

CV A
qq .
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Figure 2: LO and NLO diagrams contributing M1,W . Black solid (dashed) lines denote nucle-
ons (mesons).

sees that for on-shell nucleons this contribution actually scales as of p⌫LO+2 and therefore
enters at NNLO.

The number of diagrams grows quickly as one goes beyond NLO, and higher order terms will
involve in general vertices from e↵ective Lagrangians containing more than two baryon fields,
not considered in Table 1. In this work we consider only NLO contributions and note that a
consistent chiral counting to NLO requires to include not only loop corrections to the nucleon
scalar form factors (Fig. 2), but also meson-exchange diagrams that result in two-nucleon
operators (Fig. 3)

Finally, a similar analysis can be done for the insertion of the energy-momentum tensor ver-
tices, coupled to the external source s⇥(x) (see Eq. (2)). Using the observation that insertions
of the energy-momentum tensor on a baryon line scale as ⇥µ

µ

⇠ O(p0, p, . . . ) [34] (correspond-
ing to ✏

W

= �1, 0, . . . ) and on a meson line as ⇥µ

µ

⇠ O(p2, p4, . . . ) [39] (corresponding to
✏
W

= 0, 2, . . . ), we find that the first chiral corrections to the relation hN |⇥µ

µ

|Ni = m
N

 ̄
N

 
N

arise in principle at NNLO. Moreover, an explicit calculation [34] shows that the relevant
diagrams cancel to this order, thus pushing the corrections to N3LO.

4 NLO corrections

We now discuss the NLO contributions to M
A,W

, the A-nucleon irreducible amplitude in
presence of one insertion of the external source. As discussed earlier, the NLO corrections
fall into two classes: loop diagrams contributing to single-nucleon amplitudes and tree-level
diagrams contributing to two-nucleon interactions.

4.1 One-nucleon amplitude

The one-nucleon amplitude starts at leading order (tree-level diagram with vertex from L(2)
MB

in
Eq. (10) above) and receives NLO corrections through one-loop diagrams, as shown in Figure
2. Including NLO corrections, and denoting the HBChPT spinors for proton and neutron with
NT = (H(p)

v

, H(n)
v

), the one-nucleon amplitude reads

M1,W = �̄�


1

2

⇣
f
p

(q2) + f
n

(q2)
⌘
N̄N +

1

2

⇣
f
p

(q2)� f
n

(q2)
⌘
N̄⌧3N

�
, (12)

6

fNLO/fLO � 1 ⇠ m⇡

4⇡f⇡
⇠ 10%
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WIMP-­‐quark	
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FIG. 1: Two-nucleon diagrams that contribute to WIMP-nucleus scattering where the WIMP is generally denoted by X . Graph
(a) is of O(1/q2), graphs (b) and (c) are of O(1/q) while the contact term of graph (d) is of O(1). The exchange diagrams are
not included. The filled circles represent the non-standard model vertices.

rents is

LX q = GF

∑

q

[aq
1S q̄q + aq

2P q̄γ5q

+Vµq̄γµ(aq
3 + aq

4γ5)q + Aµq̄γµ(aq
5 + aq

6γ5)q

+aq
7T µν q̄σµνq] ,(1)

where the S,P ,Vµ,Aµ and T µν are respectively lin-
ear combinations of scalar, pseudoscalar, vector, axial-
vector, and tensor operators constructed from X and ar-
bitrary constants. The constants aq

i are parametrized in
terms of the Fermi constant GF =

√
2g2/(8M2

W) (where
MW is the W -boson mass) and depend on the particu-
lar particle-physics model (such as the MSSM) used to
generate the X -quark Lagrangian. The inclusion of n-
body quark operators with n > 1 would induce further
suppression in a heavy scale such as MW and are ex-
cluded. In the following, we will neglect the aq

2 term
which is generally suppressed by an inverse power of the
WIMP mass. Also, only SU(2) isospin symmetry will be
considered since kaon-exchange currents are suppressed
in elastic WIMP-nucleus scattering. We will therefore
truncate the sum in Eq. (1) to up and down quarks when
considering vertices that contribute to exchange currents.

The Lagrangian of Eq. (1) generates various X -hadron
interactions vertices. For the particular problem of X -
nucleus scattering at NLO, we will focus on the following
vertices: π2X 2, πN2X 2 (which contribute to the two-
nucleon current at NLO) and N2X 2 (the one-nucleon
contribution to the scattering amplitude). The corre-
sponding X -hadron Lagrangian will have the general
form

LX = Lππ + LπN2

+ LN2

; (2)

the last of these is that which has been considered
in prior work, while the first two are new. The three
parts of LX in Eq. (2) are characterized by parameters
bi, cj , dk, respectively, which in turn depend on aq

i of
Eq. (1). The precise shape of this general Lagrangian
will therefore depend on the X -quark Lagrangian and
we now proceed to construct each term in Eq. (2) in turn.

π2X 2 vertex. Up to NLO in powers of the pion
momentum, the π2X 2 Lagrangian will look like

Lππ = bsπ⃗ · π⃗S + bvi(π⃗ × ∂µπ⃗)3Vµ. (3)

In Eq. (3), only the terms with two WIMPs will be kept

in the expansion of S,P ,Vµ, and Aµ. To derive an ex-
pression for bs, we use the matrix element,

bs⟨πa|π⃗ · π⃗|πa⟩ = GF⟨πa|
∑

q=u,d

aq
1q̄q|πa⟩, (4)

from which we obtain using soft-pion techniques [8],

bs =
GFm2

π

2(mu + md)
(au

1 + ad
1), (5)

where the mi are current quark masses. The sum of the
quark masses is given in Ref. [9] as 5 MeV < mu + md <
11 MeV and we will use the average value of 8± 3 MeV.

For the NLO term of Eq. (3), we use the conservation
of the vector current (CVC) to write

bv = GF(au
3 − ad

3). (6)

Note that in the MSSM there is no contribution from aq
3.

πN2X 2 vertex. The NLO two-nucleon currents will
only receive contributions from the aq

4,5 terms in Eq. (1)
(the other possible terms contribute at NNLO) yielding

LπN2

= cvN̄γµi(⃗τ × π⃗)3NVµ + caN̄γµγ5i(⃗τ × π⃗)3NAµ,(7)

where N is the nucleon isospinor. To extract the hadronic
scales that appear as one matches the quark-X La-
grangian to the hadron-X Lagrangian we can use dimen-
sional analysis and the scaling rule [7, 10]

(

N̄N

ΛHf2
π

)k (

∂µ

ΛH

)l (

π

fπ

)m GF

ΛH
× (ΛHfπ)2, (8)

where fπ
∼= 92.4 MeV is the pion decay constant and

(k, l, m) refer to the form of the hadronic part. The ci’s
of Eq. (7) which have one nucleon current and one pion
[hence, (k, l, m) = (1, 0, 1)] can be rewritten

cv,a =
GF

fπ
(au

4,5 − ad
4,5)δv,a , (9)

where δv is O(1) and from CVC we have δa = −gA/2
with gA = 1.27, the usual axial pion-nucleon coupling.
Note that in the MSSM, cv = ca = 0.

N2X 2 vertex. The one-nucleon contribution to the
scattering amplitude is traditionally the only term con-
sidered and the full N2X 2 Lagrangian is given in Ref. [5].
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E↵ective Lagrangian d
i

n
i

✏
i

⌘ d
i

+ ni
2
� 2

L(2n)
M

2n 0 2(n� 1)

L(n)
MB

n 2 n� 1

Table 1: Chiral dimensions for vertices arising from the purely mesonic and baryon-meson
e↵ective Lagrangians. n = 1, 2, . . . represents any positive integer.

A diagram with C connected parts, L loops, V
i

strong-interactions vertices of type i and
one “weak” vertex scales as M

A,W

⇠ p⌫ with [37, 32]

⌫ = 4� A� 2C + 2L+
X

i

V
i

✏
i

+ ✏
W

. (11)

The e↵ective chiral dimension of vertex i is given by ✏
i

= d
i

+ n
i

/2 � 2 � 0, where d
i

is the

chiral dimension of the vertex (e.g. a vertex from L(1)
MB

has d
i

= 1), and n
i

is the number
of baryonic legs attached to the vertex. Note that in Eq. (11) we have explicitly isolated the
contribution ✏

W

due to the weak vertex involving the external source coupled to the WIMP.
In Table 1 we give a summary of chiral dimensions for the relevant e↵ective Lagrangians.

For fixed A, the leading contributions to the amplitude are obtained by minimizing ⌫
in Eq. (11), which is obtained by: (i) maximizing the number of connected contributions
C = A,A� 1, . . . ; (ii) minimizing the number of loops L = 0, 1, . . . ; (iii) using strong vertices

from the lowest order Lagrangians L(2)
M

and L(1)
MB

(✏
i

= 0), so as to minimize the ✏
i

; (iv)

attaching the external scalar source to a baryon line using a vertex from L(2)
MB

(✏
W

= 1) or to

a meson line using a vertex from L(2)
M

(✏
W

= 0), consistently with the requirement that there
are no external meson lines and the choice of C and L. In the case of external scalar source
we find:

• The leading order diagrams have C = A, L = 0, and ✏
W

= 1,1 i.e. they have A
disconnected parts, no loops, (i.e. no mesons in the diagram), and the source attached

to one of the nucleon lines through the vertex in L(2)
MB

. This corresponds to ⌫LO = 5�3A.

• Three classes of diagrams can contribute to NLO (⌫ = ⌫LO + 1) as can be seen by
inspecting Eq. (11): (i) C = A, L = 1, ✏

W

= 0, i.e. diagrams with A disconnected parts,

one of which involves a one-loop diagram with vertices from L(1)
MB

and the source attached

to a meson line through L(2)
M

(see Fig. 2); (ii) C = A�1, L = 0, ✏
W

= 0, i.e. diagrams with
A � 1 disconnected parts, one of which involves two nucleon lines connected by meson
exchange with vertices from L(1)

MB

and source attached to the meson line through L(2)
M

(see Fig. 3); (iii) C = A, L = 0, ✏
W

= 2, i.e. same topology as the leading diagram but
with the source attached to a nucleon line through a vertex from the O(p3) Lagrangian

L(3)
MB

. By inspecting of the only relevant vertex [31] L(3)
MB

� Tr(�+) Tr(B̄v · @B), one

1Note that ✏W = 0 is not consistent with the choice C = A and L = 0, because the source would have to
couple to a meson line and the meson line has to attach to nucleons. This produces either L = 1 or C = A�1.
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= 1), and n
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is the number
of baryonic legs attached to the vertex. Note that in Eq. (11) we have explicitly isolated the
contribution ✏

W

due to the weak vertex involving the external source coupled to the WIMP.
In Table 1 we give a summary of chiral dimensions for the relevant e↵ective Lagrangians.

For fixed A, the leading contributions to the amplitude are obtained by minimizing ⌫
in Eq. (11), which is obtained by: (i) maximizing the number of connected contributions
C = A,A� 1, . . . ; (ii) minimizing the number of loops L = 0, 1, . . . ; (iii) using strong vertices
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(✏
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= 0), so as to minimize the ✏
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; (iv)

attaching the external scalar source to a baryon line using a vertex from L(2)
MB
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W

= 1) or to

a meson line using a vertex from L(2)
M

(✏
W

= 0), consistently with the requirement that there
are no external meson lines and the choice of C and L. In the case of external scalar source
we find:

• The leading order diagrams have C = A, L = 0, and ✏
W

= 1,1 i.e. they have A
disconnected parts, no loops, (i.e. no mesons in the diagram), and the source attached

to one of the nucleon lines through the vertex in L(2)
MB

. This corresponds to ⌫LO = 5�3A.

• Three classes of diagrams can contribute to NLO (⌫ = ⌫LO + 1) as can be seen by
inspecting Eq. (11): (i) C = A, L = 1, ✏

W

= 0, i.e. diagrams with A disconnected parts,

one of which involves a one-loop diagram with vertices from L(1)
MB

and the source attached

to a meson line through L(2)
M

(see Fig. 2); (ii) C = A�1, L = 0, ✏
W

= 0, i.e. diagrams with
A � 1 disconnected parts, one of which involves two nucleon lines connected by meson
exchange with vertices from L(1)

MB

and source attached to the meson line through L(2)
M

(see Fig. 3); (iii) C = A, L = 0, ✏
W

= 2, i.e. same topology as the leading diagram but
with the source attached to a nucleon line through a vertex from the O(p3) Lagrangian

L(3)
MB

. By inspecting of the only relevant vertex [31] L(3)
MB

� Tr(�+) Tr(B̄v · @B), one

1Note that ✏W = 0 is not consistent with the choice C = A and L = 0, because the source would have to
couple to a meson line and the meson line has to attach to nucleons. This produces either L = 1 or C = A�1.
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Figure 2: LO and NLO diagrams contributing M1,W . Black solid (dashed) lines denote nucle-
ons (mesons).

sees that for on-shell nucleons this contribution actually scales as of p⌫LO+2 and therefore
enters at NNLO.

The number of diagrams grows quickly as one goes beyond NLO, and higher order terms will
involve in general vertices from e↵ective Lagrangians containing more than two baryon fields,
not considered in Table 1. In this work we consider only NLO contributions and note that a
consistent chiral counting to NLO requires to include not only loop corrections to the nucleon
scalar form factors (Fig. 2), but also meson-exchange diagrams that result in two-nucleon
operators (Fig. 3)

Finally, a similar analysis can be done for the insertion of the energy-momentum tensor ver-
tices, coupled to the external source s⇥(x) (see Eq. (2)). Using the observation that insertions
of the energy-momentum tensor on a baryon line scale as ⇥µ

µ

⇠ O(p0, p, . . . ) [34] (correspond-
ing to ✏

W

= �1, 0, . . . ) and on a meson line as ⇥µ

µ

⇠ O(p2, p4, . . . ) [39] (corresponding to
✏
W

= 0, 2, . . . ), we find that the first chiral corrections to the relation hN |⇥µ

µ

|Ni = m
N

 ̄
N

 
N

arise in principle at NNLO. Moreover, an explicit calculation [34] shows that the relevant
diagrams cancel to this order, thus pushing the corrections to N3LO.

4 NLO corrections

We now discuss the NLO contributions to M
A,W

, the A-nucleon irreducible amplitude in
presence of one insertion of the external source. As discussed earlier, the NLO corrections
fall into two classes: loop diagrams contributing to single-nucleon amplitudes and tree-level
diagrams contributing to two-nucleon interactions.

4.1 One-nucleon amplitude
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Figure 2: LO and NLO diagrams contributing M1,W . Black solid (dashed) lines denote nucle-
ons (mesons).

sees that for on-shell nucleons this contribution actually scales as of p⌫LO+2 and therefore
enters at NNLO.

The number of diagrams grows quickly as one goes beyond NLO, and higher order terms will
involve in general vertices from e↵ective Lagrangians containing more than two baryon fields,
not considered in Table 1. In this work we consider only NLO contributions and note that a
consistent chiral counting to NLO requires to include not only loop corrections to the nucleon
scalar form factors (Fig. 2), but also meson-exchange diagrams that result in two-nucleon
operators (Fig. 3)

Finally, a similar analysis can be done for the insertion of the energy-momentum tensor ver-
tices, coupled to the external source s⇥(x) (see Eq. (2)). Using the observation that insertions
of the energy-momentum tensor on a baryon line scale as ⇥µ
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arise in principle at NNLO. Moreover, an explicit calculation [34] shows that the relevant
diagrams cancel to this order, thus pushing the corrections to N3LO.
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Figure 3: Tree-level diagram contributing to M2,W . Black solid (dashed) lines denote nucleons
(mesons).
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and have the following useful properties: f(x ! 0) = 3 + 5x
12

+O(x2), f1(x, x) ⌘ f(x).

4.2 Two-nucleon amplitude

As was derived in Section 3, at NLO there appears also a contribution with A � 1 tree-level
disconnected nucleon sectors, one of which involves two nucleons and the external source. The
relevant diagram is shown in Figure 3, and the possible mesons that are exchanged are limited
to ⇡ and ⌘. The corresponding “direct” connected amplitude reads (q

i

= p
i

� p0
i

denotes the
four-momentum transfer for each nucleon):

M2,W = M
⇡⇡

+M
⌘⌘

, (18)

M
⇡⇡

= � 1

v⇤2
np

g2
A

F 2
⇡

m2
⇡

�+

(q21 �m2
⇡

)(q22 �m2
⇡

)
N̄q1 · S ⌧

k

1 N N̄q2 · S ⌧

k

2 N �̄� , (19)

M
⌘⌘

= � 1

v⇤2
np

g2
A

3F 2
⇡

✓
4↵� 1p

3

◆2 m2
⇡

�+ + 4
�
M2

K

� 1
2
m2

⇡

�
�
s

(q21 �m2
⌘

)(q22 �m2
⌘

)
N̄q1 · SN N̄q2 · SN �̄� . (20)

There is also an “exchange” amplitude, which is obtained from the direct one by changing the
overall sign and interchanging all variables of the final-state nucleons (p01 $ p02, N

0
1 $ N 0

2).
Compared to Ref. [26], where the ⇡⇡ two-body interaction has been calculated, we also

include the ⌘⌘ which is Yukawa enhanced as can be seen from Eq. (20). Later on we will study
the competition between this enhancement and the suppression expected from the fact that
the ⌘-induced potential has shorter range compared to the ⇡-mediated one.
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The number of diagrams grows quickly as one goes beyond NLO, and higher order terms will
involve in general vertices from e↵ective Lagrangians containing more than two baryon fields,
not considered in Table 1. In this work we consider only NLO contributions and note that a
consistent chiral counting to NLO requires to include not only loop corrections to the nucleon
scalar form factors (Fig. 2), but also meson-exchange diagrams that result in two-nucleon
operators (Fig. 3)

Finally, a similar analysis can be done for the insertion of the energy-momentum tensor ver-
tices, coupled to the external source s⇥(x) (see Eq. (2)). Using the observation that insertions
of the energy-momentum tensor on a baryon line scale as ⇥µ

µ

⇠ O(p0, p, . . . ) [34] (correspond-
ing to ✏

W

= �1, 0, . . . ) and on a meson line as ⇥µ

µ

⇠ O(p2, p4, . . . ) [39] (corresponding to
✏
W

= 0, 2, . . . ), we find that the first chiral corrections to the relation hN |⇥µ

µ

|Ni = m
N

 ̄
N

 
N

arise in principle at NNLO. Moreover, an explicit calculation [34] shows that the relevant
diagrams cancel to this order, thus pushing the corrections to N3LO.
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and have the following useful properties: f(x ! 0) = 3 + 5x
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4.2 Two-nucleon amplitude

As was derived in Section 3, at NLO there appears also a contribution with A � 1 tree-level
disconnected nucleon sectors, one of which involves two nucleons and the external source. The
relevant diagram is shown in Figure 3, and the possible mesons that are exchanged are limited
to ⇡ and ⌘. The corresponding “direct” connected amplitude reads (q
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There is also an “exchange” amplitude, which is obtained from the direct one by changing the
overall sign and interchanging all variables of the final-state nucleons (p01 $ p02, N

0
1 $ N 0

2).
Compared to Ref. [26], where the ⇡⇡ two-body interaction has been calculated, we also

include the ⌘⌘ which is Yukawa enhanced as can be seen from Eq. (20). Later on we will study
the competition between this enhancement and the suppression expected from the fact that
the ⌘-induced potential has shorter range compared to the ⇡-mediated one.
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of the operators O⇡⇡ and O⌘⌘ defined in Eq. (29) and Eq. (30), in terms of which one has

T (⇡⇡)
2 = � �(+)

v⇤2
np

g2Am
3
⇡

96 ⇡ F 2
⇡

N⇡⇡ (33)

T (⌘⌘)
2 = � 1

v⇤2
np

g2Am⌘

288 ⇡ F 2
⇡

✓
4↵� 1p

3

◆2 
m2

⇡ �
(+) + 4

✓
M2

K � 1

2
m2

⇡

◆
�s

�
N⌘⌘ . (34)

To evaluate the matrix elements N⇡⇡,⌘⌘ we use the NSM. In this framework, one assumes that
the nucleons feel a mean external potential and occupy levels according to Pauli’s exclusion
principle. For the self-consistent potential, we use the harmonic oscillator form with a de-
pendence of the frequency on the nucleus size empirically fit to data 3. Given an arbitrary
two-body potential Vij between nucleons i and j, NSM allows us to calculate the expectation
value of the following Hamiltonian:

G =
X

i<j

Vij. (35)

For the simplest case of all closed shells (core-core matrix element), using the raising and
lowering operator formalism the result for such expectation value in NSM equals:

hc|G |ci =
X

j1j2,J,T

(2J + 1)(2T + 1)VJT (j1, j2, j1, j2), (36)

where ji represent the orbits of NSM, encoding quantum numbers n, l, j of the orbit, j1  j2
is understood in the sense Ej1  Ej2 , and finally J runs |j1 � j2|...j1 + j2, T = 0, 1. VJT is
a two-body matrix element between the anti-symmetrized two-body wavefunction. Explicit
expression for such two-body matrix element can be found in Ref. [46]. By computing the
matrix elements for a number of closed-shell nuclei, we find the following scaling with A

N⇡⇡ ⇡ �0.91A, (37)

N⌘⌘ ⇡ 0.0061A . (38)

For N⇡⇡ the scaling is consistent with N⇡⇡ ⇠ A found in [19]. The sign di↵erence between
N⇡⇡ and N⌘⌘ appears because for pion exchange diagram the second term in the scalar form-
factor F1(x) = (x�2) exp(�x) dominates, while for ⌘⌘ on the contrary, the first term dictates
the sign. The size di↵erence arises from .... [Greg: please comment on the fact that

N⌘⌘ ⌧ N⇡⇡. After this we add a comment on the ratio T (⌘⌘)
2 /T (⇡⇡)

2 ].

6 Phenomenology

The di↵erential WIMP-nucleus scattering rate per unit time and unit detector mass reads

dR
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2⇢W
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����
h
Zfp(ER) + (A� Z)fn(ER)

i
F (ER)� T2(ER, A, Z)
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2

⌘ (ER,mW ,mA) , (39)

3We use the following form for the harmonic oscillator frequency: !(A) = (45/A1/3 � 25/A2/3)MeV. For
the lower cuto↵ in the radial integrals we use 0.5 fm.
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with f
p,n

given in Eq. (13). The one-body density can be taken from phenomenology or from
microscopic models, such as the nuclear shell model. We will use the exponential form [52]
F (E

R

) = Exp(�E
R

/(2E0)) with E
R

= |~q
W

|2/(2m
A

), E0 = 1.5/(m
A

R2
0) and R0 = [0.3 +

0.91(m
A

/GeV)1/3] ⇥ 10�13 cm. We have checked that the results are stable if we use other
parameterizations available in the literature [53, 52].

In order to calculate the two-body contribution T2 (24) to the WIMP-nucleus amplitude,
one needs the matrix elements
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of the operators O
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To evaluate the matrix elements N
⇡⇡,⌘⌘

we use the NSM. In this framework, one assumes
that the nucleons feel a mean external potential and occupy levels according to Pauli’s exclu-
sion principle. For the self-consistent potential, we use the harmonic oscillator with nucleus-
dependent frequency !(A) empirically fit to data 3. Given an arbitrary two-body potential
V
ij

between nucleons i and j, NSM allows to calculate the expectation value of the following
Hamiltonian: G =

P
i<j

V
ij

. For the simplest case of all closed shells (core-core matrix ele-
ment), using the raising and lowering operator formalism the result for such expectation value
in NSM equals:

hc|G |ci =
X

j1j2,J,T

(2J + 1)(2T + 1)V
JT

(j1, j2, j1, j2), (35)

where j
i

represent the orbits of NSM, encoding quantum numbers n, l, j of the orbit, j1  j2
is understood in the sense E

j1  E
j2 , and finally J runs |j1 � j2|...j1 + j2, T = 0, 1. V

JT

is
a two-body matrix element between the anti-symmetrized two-body wavefunction. Explicit
expression for such two-body matrix element can be found in Ref. [55]. By computing the
matrix elements for a number of closed-shell nuclei, we find the following scaling with A

N
⇡⇡

⇡ �0.91A, N
⌘⌘

⇡ 0.0061A . (36)

For N
⇡⇡

the scaling is consistent with N
⇡⇡

⇠ A found in [26]. The sign di↵erence between
N

⇡⇡

and N
⌘⌘

appears because for the pion exchange diagram the second term in the scalar
form-factor F1(x) = (x � 2) exp(�x) dominates, while for ⌘⌘ on the contrary, the first term
dictates the sign. In order to understand the size di↵erence one has to compare m

⇡

N
⇡⇡

to
m

⌘

N
⌘⌘

since the meson mass m
M

has been factored out in the definitions of nuclear operators

3We use the following form for the harmonic oscillator frequency: !(A) = (45/A1/3 � 25/A2/3)MeV [54].
For the lower cuto↵ in the radial integrals we use 0.5 fm.
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of the operators O⇡⇡ and O⌘⌘ defined in Eq. (29) and Eq. (30), in terms of which one has

T (⇡⇡)
2 = � �(+)

v⇤2
np

g2Am
3
⇡

96 ⇡ F 2
⇡

N⇡⇡ (33)

T (⌘⌘)
2 = � 1

v⇤2
np

g2Am⌘

288 ⇡ F 2
⇡

✓
4↵� 1p

3

◆2 
m2

⇡ �
(+) + 4

✓
M2

K � 1

2
m2

⇡

◆
�s

�
N⌘⌘ . (34)

To evaluate the matrix elements N⇡⇡,⌘⌘ we use the NSM. In this framework, one assumes that
the nucleons feel a mean external potential and occupy levels according to Pauli’s exclusion
principle. For the self-consistent potential, we use the harmonic oscillator form with a de-
pendence of the frequency on the nucleus size empirically fit to data 3. Given an arbitrary
two-body potential Vij between nucleons i and j, NSM allows us to calculate the expectation
value of the following Hamiltonian:

G =
X

i<j

Vij. (35)

For the simplest case of all closed shells (core-core matrix element), using the raising and
lowering operator formalism the result for such expectation value in NSM equals:

hc|G |ci =
X

j1j2,J,T

(2J + 1)(2T + 1)VJT (j1, j2, j1, j2), (36)

where ji represent the orbits of NSM, encoding quantum numbers n, l, j of the orbit, j1  j2
is understood in the sense Ej1  Ej2 , and finally J runs |j1 � j2|...j1 + j2, T = 0, 1. VJT is
a two-body matrix element between the anti-symmetrized two-body wavefunction. Explicit
expression for such two-body matrix element can be found in Ref. [46]. By computing the
matrix elements for a number of closed-shell nuclei, we find the following scaling with A

N⇡⇡ ⇡ �0.91A, (37)

N⌘⌘ ⇡ 0.0061A . (38)

For N⇡⇡ the scaling is consistent with N⇡⇡ ⇠ A found in [19]. The sign di↵erence between
N⇡⇡ and N⌘⌘ appears because for pion exchange diagram the second term in the scalar form-
factor F1(x) = (x�2) exp(�x) dominates, while for ⌘⌘ on the contrary, the first term dictates
the sign. The size di↵erence arises from .... [Greg: please comment on the fact that

N⌘⌘ ⌧ N⇡⇡. After this we add a comment on the ratio T (⌘⌘)
2 /T (⇡⇡)

2 ].

6 Phenomenology

The di↵erential WIMP-nucleus scattering rate per unit time and unit detector mass reads

dR

dER

=
2⇢W
⇡mW

����
h
Zfp(ER) + (A� Z)fn(ER)

i
F (ER)� T2(ER, A, Z)

����
2

⌘ (ER,mW ,mA) , (39)

3We use the following form for the harmonic oscillator frequency: !(A) = (45/A1/3 � 25/A2/3)MeV. For
the lower cuto↵ in the radial integrals we use 0.5 fm.
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Figure 4: Contour plots of the NLO to LO integrated rates RXe
NLO/R

Xe
LO on the (r, f̄

p

) plane,
at fixed �

s

/�⇥ = 1, with m
W

= 10 GeV (left panel) and m
W

= 100 GeV (right panel). The
solid red line corresponds to RXe

NLO/R
Xe
LO = 2 and for all points inside the solid red line the

NLO correction is more than 100%.

f
n

or equivalently the WIMP-proton cross-section �
p

/ m2
p

f 2
p

and the ratio r = f
n

/f
p

.
Starting from the short-distance interaction of Eq. (1), the cross-section depends on four
parameters (in one-to-one correspondence with �

u,d,s,⇥). This calls for a more general
analysis of data, that takes into account these additional degrees of freedom.

A convenient choice of independent parameters, that matches onto the standard choice
when neglecting NLO chiral corrections, is achieved as follows. First, we observe that f

n,p

(E
R

)
and T2(ER

, A, Z) are linear functions of �
u,d,s,⇥/⇤2

np so that the rate is a homogeneous quadratic
form in the �’s. Next, we can trade �

u,d

for f
p

and r = f
n

/f
p

, and finally we can extract �⇥ as
an overall factor. In conclusion, the four parameters controlling the rate are: (1) �⇥/(v⇤2

np),
which sets the overall normalization; (2) f

p

, or equivalently6 f̄
p

= v⇤2
np fp/�⇥; (3) r = f

n

/f
p

,;
and (4) �

s

/�⇥. The rate has the form R ⇠ (�⇥/(v⇤2
np))

2 ⇥Q(f
p

, rf
p

,�
s

/�⇥), where Q(x, y, z)
is a quadratic form in x, y, z. Neglecting NLO corrections, only two independent parameters
survive, namely f

p

(or equivalently �
p

/ m2
p

f 2
p

) and r = f
n

/f
p

, and the rate takes the simplified
form R ⇠ f 2

p

[Z + (A � Z)r]2. Note that any ratios of integrated rates only depend on three
parameters: f̄

p

, r, and �
s

/�
✓

, as the overall normalization cancels.
We illustrate the phenomenological implications of our new WIMP-nucleus amplitude pa-

rameterization in Figs. 4, 5, and 6:

• In Fig. 4 we present contour plots of the ratio of NLO to LO integrated rates RNLO/RLO

on the plane (r, f̄
p

), fixing �
s

/�⇥ = 1. We have chosen one representative target, Xenon,

6The convenience of this choice is apparent from equations Eq. (39) and Eq. (40). It is also clear that f̄p
has dimensions of energy.
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Figure 5: Recoil spectra for model A (f̄
p

= 0.5 GeV, r = 1, �
s,⇥ = 1, top panels) and

model B (f̄
p

= 0.5 GeV, r = �0.7, �
s,⇥ = 1 bottom panels), for both Xenon (blue lines) and

Germanium (red lines) to LO (dashed lines) and NLO (solid lines).

for which we considered a weighted average of all naturally occurring isotopes and the
integration region E

R

2 [8.4, 44.6] keV [3]. We plot results for two representative val-
ues of the WIMP mass m

W

= 10 GeV (left panel) and m
W

= 100 GeV (right panel).
Qualitatively similar features arise for di↵erent choices of �

s

/�⇥ 2 [�50, 50] and other
target materials, such as Germanium. The plots clearly display the importance of NLO
corrections whenever the LO rate vanishes or is highly suppressed, which happens for
f
p

= 0 (for any finite r) and Z + (A � Z)r = 0 (r ⇡ �0.7 for Xenon isotopes). Along
these singular directions the ratio RNLO/RLO diverges or is highly enhanced. Moving
away from these singular regions, the ratio RNLO/RLO decreases, but corrections remain
substantial over large regions of parameter space. We quantify this statement by high-
lighting in red the contours where RNLO/RLO = 2: within the region enclosed by these
contours the fractional corrections to the rate exceed 100%.
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Figure 6: Top panels: contour plots of the ratio of Xenon and Germanium integrated rates
RXe/RGe on the (r, f̄

p

) plane, at fixed �
s

/�⇥ = 1 and m
W

= 10 GeV to LO (left panel)
and NLO (right panel). Solid red lines on top panels represent the contour lines, where
RXe

NLO/R
Ge
NLO = 2⇥10�5. Everywhere inside the solid red lines the signal in CoGent is consistent

with null signal in Xenon100. Bottom panels: recoil spectra for model C (f̄
p

= 0.425 GeV,
r = �0.885, �

s,⇥ = 1) and model D (f̄
p

= �0.33 GeV, r = �0.4, �
s,⇥ = 1), for both Xenon

(blue lines) and Germanium (red lines) to LO (dashed lines) and NLO (solid lines).

Ref. [56] reveals that one-loop results severely under-estimate (by more than a factor of 2) the
slope of the iso-scalar (ūu + d̄d) form factor. We expect that larger slopes will increase the
impact of recoil-energy dependent form factors (f

n,p

(E
R

)), reinforcing the conclusions of our
work. Therefore, this issues deserves to be revisited in the future.
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• In Fig. 5 we illustrate the impact of chiral corrections on the recoil spectra, for two
benchmark points in the (r, f̄

p

) plane, model A where RNLO/RLO � 1 ⇠ O(10%) (top
panels), and model B where RNLO/RLO is dramatically enhanced (bottom panels). In
these plots we use ⇤np = 100GeV, v = 246GeV and �⇥ = 1 (the scaling of the rate
with these parameters is trivial). The main message is that while for low-mass WIMP
(m

W

= 10 GeV, left panels) the recoil spectrum gets mostly a normalization correction
with no dramatic change in the shape regardless of the value of r, for larger WIMP
masses (m

W

= 100 GeV, right panels) the recoil spectrum is considerably distorted
when Z + (A � Z)r ⇡ 0. This result arises from the competition between the linearly
rising f

n,p

(E
R

) and the exponentially falling velocity integral ⌘(E
R

,m
W

,m
A

), which cuts
o↵ at lower E

R

for lower m
W

.

• Finally, in Fig. 6, we explore to what extent in our general framework for scalar-mediated
WIMP-nucleus interactions we can reconcile the tension between CoGeNT [2], which
favors a low-mass WIMP and XENON100 [3], which puts an upper limit on the rate
in this mass region. The tension can be quantified as follows: for m

W

= 10 GeV
the standard LO fit with r = f

n

/f
p

= 1 implies [8] �XENON100
p

< 4 ⇥ 10�43cm2 and
�CoGeNT
p

> 4 ⇥ 10�42cm2 (assuming large contaminations in CoGeNT [8]), and hence
�XENON100
p

/�CoGeNT
p

< 0.1. In turn, this can be converted into an upper bound on the
ratio of integrated rates RXe/RGe at m

W

= 10 GeV, for any energy window. Using E
R

2
[8.4, 44.6] keV [3] for Xe (XENON100) and E

R

2 [2.3, 11.2] keV [7] for Ge (CoGeNT)
we find RXe/RGe < 2⇥ 10�5.

In Fig. 6 we show contour plots of RXe/RGe in the (r, f̄
p

) plane to LO (top left panel)
and NLO with �

s

/�⇥ = 1 (top right panel). In these plots we also highlight in red the
curves along which RXe/RGe = 2⇥ 10�5. As seen from the top left panel, assuming LO
cross-sections there is a narrow region around r = �0.7 consistent with experimental
constraints. This is the well known regime of isospin violating dark matter (IVDM) [12,
13, 14, 15]. However, as expected from Fig. 4 and explicitly shown in the top right
panel of Fig 6, along the r = �0.7 line the LO analysis cannot be trusted. Interestingly,
our results show that to NLO there are still regions of parameter space consistent with
RXe/RGe < 2 ⇥ 10�5, which are non-trivial deformations of the narrow band around
r ⇡ �0.7. In these regions, the NLO corrections provide a 90% suppression of the
Xenon rates, i.e. RXe

NLO/R
Xe
LO < 0.1, again pointing to the importance of the new e↵ects.

We have checked that even changing the energy-integration regions the same features
emerge. For completeness, in the bottom panels of Fig. 6 we show the recoil spectra
corresponding to two points in parameter space (marked as C and D in the top panels)
consistent with RXe/RGe < 2⇥ 10�5 to NLO.

The main features of the results presented in Figs. 4, 5, and 6 are robust against changes
in the hadronic matrix elements �(p,n)

q

and the low-energy constant ↵ = F/(F + D). We
have varied these inputs in the ranges presented in Section 4 and verified that the changes
in Figs. 4, 5, and 6 are at the 5% level at most. This uncertainty grows to about 20% level
when �

s

/�⇥ � 1. A related important question for the phenomenology is: how robust is the
one-loop ChPT calculation of the slope of the scalar form factors? The dispersive analysis of

16

Inside	
  the	
  solid	
  red	
  
	
  line	
  we	
  have:	
  

Cirigliano,	
  Graesser,	
  GO,	
  2012	
  

which	
  is	
  the	
  condi+on	
  	
  
that	
  insures	
  that	
  CoGeNT	
  
signal	
  cannot	
  be	
  observed	
  
at	
  Xenon100	
  

r=fn/fp	
  

For	
  isospin	
  viola+ng	
  	
  
dark	
  ma2er	
  (Xe):	
  

Zfp+(A-­‐Z)fn=0	
  



Results	
  for	
  Xenon/CDMS-­‐Si	
  
2013	
  



Isospin	
  Viola+ng	
  Dark	
  Ma2er	
  
dR

dER
=

2⇢W
⇡mW

|[Zfp + (A� Z)fn]F (ER)|2 ⌘(ER,mW ,mA)

2

destructive interference can instead suppress the scattering cross section. Although direct detection experiments
typically present results in terms of �p, the actual quantity reported is the normalized-to-nucleon cross section �Z

N ,
which is the dark matter-nucleon scattering cross section that is inferred from the data of a detector with a target
with Z protons, assuming isospin-invariant interactions. This quantity is related to �p by the “degradation factor” [6]

DZ
p ⌘ �Z

N

�p
=

P
i ⌘iµ

2
Ai
[Z + (fn/fp)(Ai � Z)]2
P

i ⌘iµ
2
Ai
A2

i

, (1)

where ⌘i is the natural abundance of the ith isotope, µAi = mXmAi/(mX + mAi) is the reduced mass of the dark
matter-nucleus system, and fn and fp are the couplings of dark matter to neutrons and protons, respectively. For
isospin-invariant interactions, fn = fp, and �Z

N = �p.
Although �p is not directly measured, a determination of the normalized-to-nucleon cross section by two detectors

with di↵erent targets provides a measurement of �Z1
N /�Z2

N = DZ1
p /DZ2

p . From Eq. (1), this quantity depends quadrat-
ically on fn/fp. Measurements of the normalized-to-nucleon cross section by two experiments with di↵erent targets
are thus su�cient to determine fn/fp up to a two-fold ambiguity. A measurement with a third target material is
required to break this degeneracy.

III. BENCHMARKS

Absent any prejudice, fn/fp is a free parameter that must be constrained by data, no di↵erent than the mass and
cross section. But we can identify some benchmark values of fn/fp that are particularly noteworthy:

1. fn/fp = �13.3 (“Z-mediated”): Valid for dark matter with Z-mediated interactions with the SM.

2. fn/fp = �0.82 (“Argophobic”): For this value, the sensitivity of argon-based detectors is maximally degraded.
Note that potential CoGeNT and CDMS-Si signals can be made consistent for fn/fp = �0.89 [6]. (The other
region for which these signals can be consistent includes the isospin-invariant case.)

3. fn/fp = �0.70 (“Xenophobic”): For this value, the sensitivity of xenon-based detectors is maximally degraded.

4. fn/fp = 0 (“Dark photon-mediated”): Valid for dark matter that interacts with the SM through kinetic mixing
with the photon.

5. fn/fp = 1 (“Isospin-invariant”): Valid for dark matter that interacts with the SM through Higgs exchange.

IV. IMPACT ON DIRECT DETECTION

In Fig. 1 we plot �Z
N/�p as a function of fn/fp for many of the target materials commonly used for direct detection

experiments. The full range of fn/fp is shown in Fig. 1(a) and the destructive interference region (�1.5  fn/fp 
�0.5) is shown in Fig. 1(b). For materials with only one isotope with significant abundance, such as oxygen, nitrogen,
helium, sodium, and argon, it is possible to almost completely eliminate the detector’s response with a particular
choice of fn/fp. But for a material such as xenon, with many isotopes, it is not possible to cancel the response of all
isotopes simultaneously. For materials such as carbon, silicon, germanium, xenon, and tungsten, the maximum factor
by which their sensitivity to �p may be degraded is within the range 10�5 � 10�3.

Figure 2 shows relevant direct detection constraints and possible signals in the dark matter mass range 5�20 GeV.
For the isospin-invariant case shown in Fig. 2(a), fn/fp = 1, XENON100 results [17] place stringent constraints on
the parameter space. On the other hand, for the xenophobic value fn/fp = �0.70 shown in Fig. 2(b), the CDMS-Si
ROI almost entirely evades the XENON100 bound, and the ROIs from CoGeNT [8] and an ROI from an independent
reanalysis of CDMS-Ge data [18] become marginally consistent with the XENON100 bound. However, the DAMA [7]
and CRESST [10] ROIs remain in tension with XENON100 bounds for fn/fp = �0.70, and the agreement between
CDMS-Si and the CoGeNT and CDMS-Ge results is weakened.

V. COMPLEMENTARY ASTROPHYSICAL AND COLLIDER PROBES

IVDM models can also be probed through monojet/monophoton collider searches [6, 22–24] and indirect detection
searches using the galactic center, galactic halo, dwarf spheroidals, etc. as sources [23, 25, 26]. To compare sensitiv-
ities, one typically considers a particular dark matter-parton interaction structure that generates spin-independent
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of the operators O⇡⇡ and O⌘⌘ defined in Eq. (29) and Eq. (30), in terms of which one has

T (⇡⇡)
2 = � �(+)

v⇤2
np

g2Am
3
⇡

96 ⇡ F 2
⇡

N⇡⇡ (33)

T (⌘⌘)
2 = � 1

v⇤2
np

g2Am⌘

288 ⇡ F 2
⇡

✓
4↵� 1p

3

◆2 
m2

⇡ �
(+) + 4

✓
M2

K � 1

2
m2

⇡

◆
�s

�
N⌘⌘ . (34)

To evaluate the matrix elements N⇡⇡,⌘⌘ we use the NSM. In this framework, one assumes that
the nucleons feel a mean external potential and occupy levels according to Pauli’s exclusion
principle. For the self-consistent potential, we use the harmonic oscillator form with a de-
pendence of the frequency on the nucleus size empirically fit to data 3. Given an arbitrary
two-body potential Vij between nucleons i and j, NSM allows us to calculate the expectation
value of the following Hamiltonian:

G =
X

i<j

Vij. (35)

For the simplest case of all closed shells (core-core matrix element), using the raising and
lowering operator formalism the result for such expectation value in NSM equals:

hc|G |ci =
X

j1j2,J,T

(2J + 1)(2T + 1)VJT (j1, j2, j1, j2), (36)

where ji represent the orbits of NSM, encoding quantum numbers n, l, j of the orbit, j1  j2
is understood in the sense Ej1  Ej2 , and finally J runs |j1 � j2|...j1 + j2, T = 0, 1. VJT is
a two-body matrix element between the anti-symmetrized two-body wavefunction. Explicit
expression for such two-body matrix element can be found in Ref. [46]. By computing the
matrix elements for a number of closed-shell nuclei, we find the following scaling with A

N⇡⇡ ⇡ �0.91A, (37)

N⌘⌘ ⇡ 0.0061A . (38)

For N⇡⇡ the scaling is consistent with N⇡⇡ ⇠ A found in [19]. The sign di↵erence between
N⇡⇡ and N⌘⌘ appears because for pion exchange diagram the second term in the scalar form-
factor F1(x) = (x�2) exp(�x) dominates, while for ⌘⌘ on the contrary, the first term dictates
the sign. The size di↵erence arises from .... [Greg: please comment on the fact that

N⌘⌘ ⌧ N⇡⇡. After this we add a comment on the ratio T (⌘⌘)
2 /T (⇡⇡)

2 ].

6 Phenomenology

The di↵erential WIMP-nucleus scattering rate per unit time and unit detector mass reads

dR

dER

=
2⇢W
⇡mW

����
h
Zfp(ER) + (A� Z)fn(ER)

i
F (ER)� T2(ER, A, Z)

����
2

⌘ (ER,mW ,mA) , (39)

3We use the following form for the harmonic oscillator frequency: !(A) = (45/A1/3 � 25/A2/3)MeV. For
the lower cuto↵ in the radial integrals we use 0.5 fm.
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Figure 1: Left panel: Xenon degradation factors. Solid lines represent DNLO(r, �s, �✓) (Eq. (13)) with �✓ = �s = 0 (blue line), �✓ = 0.1 (red line),
�✓ = �0.1 (green line), and �✓ = �0.025 (purple line). The dashed blue line represents DLO(r). DLO(r) and DNLO(r, 0, 0) are nearly degenerate,
as explained in the text. Note that for other values of �s and �✓ the degradation factor at NLO has a sizable shift. Middle panel: Dependence of
the position of the minimum of DNLO, denoted by rmin, on �✓, with �s = 0. Benchmarks discussed further in the text are also shown. Right panel:
Dependence of the value of DNLO(rmin) on �✓ with �s = 0. Note that at rmin the values of the degradation factor are nearly independent of �✓.

26, 27, 28]. The original references worked to LO in ChPT and their definition can be cast in terms of the integrated
rates R̄ as

DLO(r) =
R

LO ⇣
r,�p

⌘

R
LO ⇣

1,�p

⌘ , R ⌘
Z Emax

R

Emin
R

dER
dR

dER
, (12)

with experiment-dependent integration limits Emin/max
R . Note that for a given isotope DLO / [Z + (A � Z)r]2 and one

can use either the integrated or the di↵erential rate, as the energy-dependence cancels in the ratio. This is not true
anymore to NLO, so we generalize the definition of degradation factor as follows

DNLO(r, �s, �✓) =
R

NLO ⇣
r,�p, �s, �✓

⌘

R
LO ⇣

1,�p

⌘ , (13)

and note that while the dependence on �p drops in the ratio, DNLO depends not only on r, but also on �s,✓.
Inspection of Eqs. (4) through (9) shows that DNLO is still a quadratic form in r. However, as illustrated below,

for a given target the location of the minimum and the value at the minimum are a↵ected in a non-trivial way by the
chiral corrections.

In Fig. 1 we illustrate the impact of chiral corrections on the degradation factor, using as a benchmark the Xenon
target (summing over isotopes). In the left panel we show both DLO (dashed line) and DNLO versus r for �s = 0 and
�✓ = 0,±0.1. A few salient features emerge: first, in the absence of 2nd and 3rd generation couplings (in the low-
energy theory) the NLO corrections are %-level and do not significantly a↵ect the degradation factors 3. However, as
one “turns on” the WIMP coupling to strange and ✓µµ, even at a level of 10% of the light quark couplings, the results
change dramatically, with an O(1) shift in the value of r for which the degradation factor has a dip (compared to the
well-known LO case r ' �0.7). The bulk of the shift is caused by the two-body correction A2 in Eq. (4), as one can
verify using Eqs. (4) through (9) and typical recoil energies of O(10) keV. That the NLO corrections depend on �✓
may at first seem strange, since they do not have any such explicit dependence. Such a dependence is induced through
our choice of independent parameters (namely �d ⌘ �d/�u depends not only on r, but also on �s and �✓).

Varying �s while keeping �✓ = 0 produces similar results. In fact, neglecting the small slope corrections, the e↵ect
of �s,✓ is degenerate, as they appear in the linear combination � f = �s�s + mp�✓. Finally, we note that sizable shifts

3This can be understood as follows: in the region r ⇠ �1 one finds fd ⇠ �mu/md ⇠ �1/2, which combined with the numerical values in Table 1
simultaneously suppresses both the slopes sp,n and A2, i.e. the entire NLO corrections. In the region r , �1 the suppression comes from the overall
factor fu, that gets suppressed by a factor of ⇠ ⇠ 0.18 compared to its value at r ⇠ �1.

4

NLO e↵ects. This means we: neglect (i) all slope terms compared to the two-body corrections (sq
N ER ⌧ tu,d,s); (ii)

ignore the strange contribution to 2-body amplitude (ts ⌧ tu,d); (iii) and drop terms of O(⇠) compared to terms of
O(1). With these assumptions we find that the NLO corrections are controlled by the quantity �:

dR
dER

NLO
/

������


ZF(ER) + A� F⇡⇡(ER)

�
+ r


(A � Z) F(ER) � A� F⇡⇡(ER)

�������

2

(14)

� =
1

2 ⇠
h
� f
�⇡N
+ 2mu

mu+md

i ·
"

tu
�⇡N
� td
�⇡N

mu + md

md

 
� f
�⇡N
+

mu

mu + md

!#
. (15)

Setting F(ER) = F⇡⇡(ER) = 1 (which is a good approximation for light WIMPs) we obtain for the location of the
minimum

rmin = �
Z̄

1 � Z̄
·

1 + �Z̄
1 � �

1�Z̄

Z̄ = Z/A , (16)

where the first factor is the LO result and the second factor represents the NLO shift. After appropriate averaging over
multiple isotopes, the above expressions explain quite accurately the corrections we observe in our parameter scan.

In particular, the above expressions explain very peculiar degeneracies observed when one scans in both the
WIMP-quark couplings �✓,s and in the hadronic and nuclear matrix elements �⇡N , tu,d (see Figs. 2,3). All the degen-
eracies derive from the relation

�[�s,✓,�⇡N ,�s, tu,d] = constant . (17)

For fixed hadronic matrix elements, this constraint describes a sub-surface in the space of couplings, independent of
r. Allowing for hadronic uncertainties pu↵s the surface out into a sub-volume. For example, keeping �s = 0 and
�s, tu,d fixed to their central values, we obtain very similar results for the three following choices: (1) �⇡N = 45 MeV,
�✓ = �0.15 ; (2) �⇡N = 30 MeV, �✓ = +0.1 ; (3) �⇡N = 60 MeV, �✓ = �0.1. They correspond to very close values of
� = 0.147, 0.144, 0.152, respectively. More generally we show in Fig. 3 the full extent of these degeneracies, using
both the full NLO results and the approximate formula Eq. (14) (dashed lines), both appropriately averaged over
isotopes. The left panel shows contours of fixed rmin (where R̄NLO(Xe)/R̄NLO(S i) is minimized for fixed couplings �✓
and �s). Here one finds a range of values for rmin. The right panel shows contours of R̄NLO(Xe)/R̄NLO(S i) evaluated
at rmin. Here one finds the double ratio to have only O(1) variation across the plane, demonstrating the existence
of other values of r, �s and �✓ having equally good suppression of the relative rate as compared to the canonical
IVDM scenario. In comparing the two panels note the approximate analytic and full numerical expressions have good
agreement for contours of rmin, whereas for the double ratio R̄NLO(Xe)/R̄NLO(S i)[rmin] there is also good agreement
over much of the panel, except in the region where rmin becomes large. These two seemingly contrasting features can
be easily understood. The point is that the numerator of the double ratio is a quadratic form in r and �, with slightly
di↵erent coe�cients between the exact and approximate expressions. Since the value of the quadratic form at the
minimum is suppressed (with only one isotope it would be zero) through a cancellation between terms that are each
large, small di↵erences in the coe�cients between the full and approximate expressions lead to larger variation in the
value of the minimum, especially as rmin becomes large 4.

An approximate degeneracy also passes through the canonical IVDM point having r = �0.7 and �s = �✓ = 0. This
point has � = 0, which selects � f ' �0.118 MeV. One finds almost perfect degeneracy in the degradation variable
along this line, provided �s < O(1). Values of couplings along this line will provide as good a fit to the direct detection
data as the canonical point. For larger values of �s the slope terms become important and the degeneracy weakens.

This analysis illustrates an important point: hadronic uncertainties a↵ect the extraction of quark-WIMP couplings
from phenomenologically interesting regions in the �p � r plane. In turn, this a↵ects other aspects of WIMP phe-
nomenology such as indirect detection or collider searches.

4This can be understood in more detail. Indeed consider a quadratic function V(r) = ar2 + br + c. The position of the minimum and value
at the minimum are: rmin = �b/(2a) and V(rmin) = c � b2/(4a). If we know the coe�cients a, b, c only approximately: a1 = a(1 + ✏1), b1 =
b(1 + ✏2), c1 = c(1 + ✏3), then the approximate formulas for rappr

min = rmin(1 + ✏2 � ✏1) and V(rmin)appr = V(rmin)(1 + ✏3) + ar2
min(✏1 � 2✏2 + ✏3) and

thus if ar2
min >> V(rmin) the value at the minimum cannot be resolved by an approximate formula. In reality in right panel of Fig. 3 the ratio of two

quadratic equations is minimized, but the conclusions from our toy model apply.
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Figure 4: Best-fit CDMS-Si (contours at 68% and 90% CL) and XENON/CDMS-Ge/LUX exclusions (at 90 % CL) under di↵ering assumptions
labelled on the top of each panel. In all cases, we have set �s = 0 and used central values of the hadronic matrix elements. The left-hand panel
shows the ”conventional” IVDM point, reproducing results found in [13]. The middle and right panel show the same r = �0.7 point with small
amounts of �✓ turned on. Note that for both points the region allowed in the left panel is now excluded.

one of their Ge detectors - T1Z5 - that apparently has the best quality data. We use the e�ciencies and total exposure
provided by the supplemental information to [40]. The total exposure of this detector was 35 kg–days. To account for
the finite energy resolution of the detector, the energy of the nuclear recoil is smeared according to [42] with an energy
resolution �E = 0.2

p
E/keV keV [35]. This experiment saw 36 events in their signal region whose origin remains

undescribed. To set a conservative upper limit we attribute all of these events to signal - following the experimental
collaboration and other theory papers [41, 35]. Using Poisson statistics a 90% C.L. signal upper limit of 44 events is
obtained.

For the Xenon10, Xenon100 and LUX experiments we follow [43] and convolve the energy-rate dR/dE with a
Poisson distribution in the number of photoelectrons or electrons detected. The mean number of electrons expected
⌫(E) is specific to each experiment, depending on energy-dependent light or electron yields, and on scintillation
e�ciencies.

LUX: The first data release from LUX [7] has an exposure of 10,065 kg–days. An upper limit of 2.4 signal events
for mDM < 10 GeV is reported [44], with up to 5.3 events allowed for larger masses. We conservatively apply a limit
of 2.4 signal events to the whole mass range mDM 2 (5, 30) GeV. We use the acceptance provided by [7]. We use the
energy-dependent light-yield Ly presented in [44], including a sharp cuto↵ at 3 keV. We use the scintillation e�ciency
Le f f provided by [45]. After convolving, we then sum over the S1 signal region (2,30), finding good agreement with
the LUX limits [7]. Smearing the number of photoelectrons produced with a gaussian to model the response of the
detector, as in [43], with a variance of 0.5 PE (photoelectrons), does not appreciably a↵ect our limits.

Xenon10: While the values of the electron yield Qy(E) at low energies are controversial, here we simply adopt the
collaboration’s parameterization from Fig.1 of [5], assuming a sharp cuto↵ to zero at 1.4 keV nuclear recoil energy.
Their signal region is from 5 electrons to ⇡ 35 electrons, corresponding to nuclear recoils of ⇡1.4 keV to 10 keV, and
has an e↵ective exposure of 6.25 kg–days. A limit is obtained using Poisson statistics with 23 events expected and 23
detected, allowing 9.2 events.

Xenon100: We use the mean ⌫(E) characterized by [43]. For the scintillation e�ciency Le f f we use the e�ciency
used in Xenon100’s 225-live-day analysis [6], that can be found in Fig.1 of ref. [46] and includes a linear extrapolation
to 0 for E below 3 keV. The response of the detector is modeled by a Gaussian smearing with a mean n and variancep

n�PMT with �PMT = 0.5 PE [43]. The smearing also includes a photoelectron-dependent acceptance, which we
parameterize from Fig.1 of [6]. To get the total rate we then sum the di↵erential rate over the signal region - which
for the analysis in [6] corresponds to S 1 2 (3, 30) PE - and use a total exposure of 225 ⇥ 34 kg-days [6]. We then use
Poisson statistics to obtain a 90% C.L. upper limit where 1 background event is expected and 3 observed.

In general we find our exclusions and best-fit region of LO analysis for r = 1 – the only point we can compare to
– have good agreement with those of the experimental collaborations.

Let us now turn to discussing fits to the benchmark points shown in Fig. 1. In the three panels of Fig. 4 we present
our NLO results for r = �0.7 and �s = 0, �✓ = 0,±0.1. Our fit for r = �0.7 and �s = 0, �✓ = 0 (Benchmark A) agrees
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Figure 5: Same assumptions as in Fig. 3 with unconventional choices of r that are excluded at LO. Note especially the panel on the bottom
right-side which compared to the other panels has a di↵erent choice of �⇡N = 60 MeV. The allowed and excluded regions are practically identical
to the panel on the bottom left-side having the same value of r. The similarity of these two panels illustrates the interplay of allowed or excluded
regions and uncertainties in the hadronic parameters.

well with the LO fits in the literature (see e.g. [12, 25], and recently, [13]). The r = �0.7 NLO fit with �✓ = �s = 0
is essentially identical to the LO fit, since at this benchmark point the NLO corrections are accidentally small. The
smallness of NLO corrections for these coupling values is discussed previously in Sect. 3. As one can see from all
panels in Fig. 4 we find that although these benchmarks have the same values of r, they lead to qualitatively di↵erent
fits as expected, with a valid region in the parameter space consistent with CDMS-Si signal and LUX bound only
for �s = 0, �✓ = 0 . Even a relatively small heavy quark coupling, �✓ = ±0.1�u, results in a completely excluded
region with r = �0.7. Thus for r = �0.7 to remain a possibility for improving the compatibility between CDMS-Si
and the null LUX searches, one must examine models with either (i) strongly suppressed second and third generation
couplings, or (ii) those lying on the � f ' 0 degeneracy, as described in Sect. 4.

Given this tension with the r = �0.7 solution at NLO, one may wonder if new solutions with di↵erent values
of r arise. This indeed seems plausible given the results of Sec. 3. Inspecting the left panel of Fig. 1 we see three
choices of parameters that may result in an improved compatibility between LUX and CDMS-Si: (1) Benchmark D:
�✓ = �0.025�u with r = +0.15, (2) Benchmark E: �✓ = �0.1�u with r = �1.45, and (3) Benchmark F: r = �1 for
�✓ = +0.1�u. This observation motivates the choice of Benchmarks D, E and F whose fits are shown in Fig. 5. We
see that these very di↵erent choices of �1.45 . fn/ fp . .15 can result in a comparable reduction in tension between
the Xenon based experiments and CDMS-Si. In the absence of NLO corrections, these benchmarks would be strongly
excluded.

Lastly, we choose Benchmark G (�✓ = �s = 1 with r = �1) to illustrate one of the degeneracies discussed in Sect.
4. The fit with this set of parameters is illustrated in the bottom right panel of Fig. 5. This final benchmark is chosen
with �⇡N = 60 MeV, such that it is roughly degenerate with Benchmark F. Upon inspection of the fits resulting from
the two benchmarks, we see that indeed all the experiments have nearly identical sensitivities. This final benchmark
requires �⇡N to be high in order to remain consistent with the constraints from LUX, and is completely excluded at
90% CL with �⇡N at its central value of 45 MeV.
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canonical IVDM point r ⌘ fn/ fp ' �0.7, where the signal for Xe is suppressed at LO by several orders of magnitude,
it was found that the chiral corrections wash out the LO cancelation generically, and move the “Xenophobic” point to
other regions in the parameter space of WIMP-quark couplings. In this letter we explore in detail these points.

The remainder of this paper is organized as follows. In Sec. 2 we review and update our results on scalar-mediated
DM-quark interactions, including now the momentum dependence in the two-body amplitude. In Sec. 3 we study
the degradation in sensitivity experienced by a Xenon target at NLO and compare the e↵ect of chiral corrections for
Xenon, Silicon and Germanium targets. In Sec. 4 we discuss parameter degeneracies and the role of hadronic and
nuclear uncertainties. Then in Sec. 5 we compute the best-fit and excluded regions from the CDMS-Si, XENON, and
LUX experiments respectively. There we find that the well-known r = �0.7 only maintains a partial compatibility pro-
vided either that the strange and heavy quark couplings in the e↵ective low-energy theory are su�ciently suppressed,
or that these couplings lie on a line corresponding to an approximate degeneracy in the total recoil rate. In addition,
we also find new regions of partial compatibility for which fn/ fp is significantly di↵erent from �0.7. Finally in Sec. 6
we discuss the implications of these findings for future DM data, including direct detection and collider searches.

2. Setup

Below the scale of the heavy quarks, the scalar interaction of WIMPs (denoted by X) with light quarks is given by
the e↵ective Lagrangian [16]

Le↵ =
X

q=u,d,s

�q

v⇤2 XX mqqq +
�✓

v⇤2 XX ✓µµ , (1)

where ⇤ is a generic new physics scale, v = (
p

2GF)�1/2 is the electroweak scale and ✓µµ is the trace of the energy-
momentum tensor. The e↵ect of WIMP couplings to heavy quarks is encoded in the coe�cient �✓ = (2/27)

P
Q �̃Q �

(8/9)�̃G, and also in the couplings of the light quarks through the relation �q = �̃q � �✓. Here �̃q,Q and �̃G are the
short-distance couplings of dark matter to light quark, heavy quarks, and the gluon field strength.

At leading order (LO) in chiral EFT, the four quark-level couplings �u,d,s,✓ collapse into two independent combi-
nations, i.e. the zero momentum transfer matrix elements of Le↵ in the proton and neutron, fp,n,

fp,n =
1

v⇤2


�⇡N (�+ ± ��⇠) + �s�s + �✓ mp

�
, �± = (�umu ± �dmd)/(mu + md) , (2)

where �⇡N = ((mu + md)/2)hp|ūu + d̄d|pi, ⇠ = hp|ūu � d̄d|pi/hp|ūu + d̄d|pi, �s = hp|mss̄s|pi, and the upper (lower)
sign refers to p (n) 1. These relations are valid up to small isospin-breaking e↵ects of order (mu�md)/⇤QCD. Working
to LO in chiral EFT, it is convenient to trade fn,p for �p ⌘ 2 kX µ2 f 2

p /⇡ and r ⌘ fn/ fp (µ is the WIMP-proton reduced
mass and kX = 1/2(2) for Dirac (Majorana) fermions). To LO the WIMP-nucleus di↵erential rate is then given by:

dR
dER

LO
=
�p ⇢0

2µ2mX

����
⇣
Z + (A � Z)r

⌘
F(ER)

����
2
⇥ ⌘ (ER,mX ,mA) , (3)

where mX and mA are the WIMP and target nucleus masses, F(ER) is the one-body nuclear form factor, ⇢0 is the
local DM mass density, and ⌘(ER,mX ,mA) is the flux factor involving an integral over the local WIMP velocity
distribution [21, 22, 23, 24]. This is the familiar result used in phenomenological applications. Note that any value of
�p and r can be obtained by an appropriate choice of the quark couplings �i/⇤2. However, in the limit ⇠ ! 0 only
r = 1 is possible for all choices of �i, as seen from Eq. (2).

As discussed in Ref. [16], at next-to-leading order (NLO) one needs all four �u,d,s,✓ parameters to describe the
scattering rate. The �u,d,s,✓ couplings appear in the recoil energy dependence of neutron and proton matrix elements,
as well as a new two-body contribution to the amplitude (A2(ER)). In order to make contact with the existing phe-
nomenology we choose as independent parameters the “standard” quantities �p and r, as well as the rescaled strange
and gluonic (heavy quark) couplings �s,✓ ⌘ �s,✓/�u. With this choice, the NLO WIMP-nucleus di↵erential rate reads

dR
dER

NLO
=
�p ⇢0

2µ2mX

������


Z
⇣
1 + spER

⌘
+
⇣
A � Z

⌘ ⇣
r + snER

⌘�
F(ER) + A2(ER)

������

2

⇥ ⌘ (ER,mX ,mA) , (4)

1For the nucleon sigma-terms we use the lattice QCD ranges �⇡N = 45(15) MeV, �s = 45(25) MeV (from the review [19]). ⇠ can be related to
y ⌘ 2hp|s̄s|pi/hp|ūu + d̄d|pi through an analysis of baryon masses in the S U(3) limit [20], leading to ⇠ = (1 � y) 0.197 = 0.18(1).
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Conclusions	
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