Los Alamos National Laboratory

Los Alamos National Laboratory

Delivering science and technology to protect our nation and promote world stability
Find Expertise logo

Profile Pages

View homepages for scientists and researchers. Explore potential collaborations and project opportunities. Search the extensive range of capabilities by keyword to quickly find who and what you are looking for.

Zhiming Lu

Zhiming Lu

Phone (505) 665-2126


  • Computational Physics and Applied Mathematics
  • Numerical modeling
  • Mathematics
  • Algorithms
  • Computational fluid dynamics (CFD)
  • Monte Carlo methods
  • Subsurface flow simulation
  • Multiscale-multiphase-multicomponent subsurface reactive flows
  • Applied Math
  • Deterministic Transport
  • Uncertainty quantification
  • Uncertainty analysis
  • Computer and Computational Sciences
  • High performance computing
  • Earth and Space Sciences
  • Subsurface flow and transport
  • Hydrology
  • Information Science and Technology
  • Uncertainty quantification (UQ)
  • Latin hypercube sampling (LHS)
  • Computational Physics and Applied Mathematics
  • Sensitivity analysis
  • Stochastic simulations
  • Level set methods
  • Earth and Space Sciences
  • Inverse modeling
  • Model calibration
  • Oil and gas reservoir simulations


  1. Quantifying flow and transport in randomly heterogeneous porous media
    • Multiphase flow;
    • Well capture zone analysis;
    • Probability collocation methods;
    • Solute spreading in nonstationary field;
    • Flow in multimodal heterogeneous porous media;
    • Analytical solutions for saturated and unsaturated flow;
    • Efficient and accurate, KL-based moment equation methods (KLME);
    • Analytical solutions to ergodic/non-ergodic transport in bounded domains.
  2. Inverse modeling
    • Markov Chain Monte Carlo method (MC 2);
    • Subsurface characterization using the level set method.
    • Data assimilation using the KL-based Karman Filter method (KLKF);
  3. Upscaling of heterogeneous porous media
    • Uncertainty of effective parameters.
    • Scale-dependent flow & transport parameters;
    • Effective permeability of random fracture networks;
    • Effective permeability of statistically homogeneous porous media;
  4. Simulations of rare events using importance sampling methods
    • Estimating the probability of contaminant reaching an area of interest (i.e, city limit).


PhD., Hydrology, University of Arizona, 2000

M. S., Applied Earth Sciences, specializing in Geomathematics, 1995

M. S., Geology, Zhejiang University, 1985

B. S., Mathematics, major in Statistics, Zhejiang University, 1982.


LANL Positions

2002-present, Staff Scientist

2000-2002, Post-doc 


Professional Societies

American Geophysical Union

American Geological Society



  1. Lu, Z. and V. V. Velimir (2015), Analytical sensitivity of transient groundwater flow in a bounded model domain using the adjoint method, Water Resources Research, 10.1002/2014WR016819.

  2. Ma, T., C. Li, Z. Lu, and Q. Bao (2015), Rainfall intensity-duration thresholds for the initiation of landslides in Zhejiang Province, China, Geomorphology, 245, 193-206.

  3. Ma, T., C. Li, and Z. Lu, Estimating the average concentration of minor and trace elements in surficial sediments using fractal methods, J. Geochemical Exploration, 139, 207-216, 2014.

  4. Ma, T., C. Li, Z. Lu, and B. Wang, An effective antecedent precipitation model derived from the power-law relationship between landslide occurrence and rainfall level, Geomorphology, 216, 187-192, 2014.

  5. Dai, Z. P. H. Stauffer, J. W. Carey, R. S. Middleton, Z. Lu, J. F. Jacobs, K. Hnottavange-Telleen, and L. H. Spangler (2014), Pre-site characterization risk analysis for commercial-scale carbon sequestration, Environ. Sci. & Tech., 48, 3908-3915. .

  6. Chen, M., Y. Sun, P. Fu, C. R. Carrigan, Z. Lu,, C. H. Tong, and Th. A. Buscheck, Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks, Computers and Geosciences, 58, 69-79, 2013.

  7. Sun, Y. A., M. Zeidouni, J.-P. Nicot,Z. Lu, and D. Zhang, Assessing Leakage Detectability at Geologic CO2 Sequestration Sites Using the Probabilistic, Advances in Water Resources, 56, 49-60, 2013.

  8. Deng, H., Z. Dai, A. V. Wolfsberg, M. Ye, P. H. Stauffer,Z. Lu, and W. Kwicklis, Upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies , Chemosphere, 91(3), 248-257, 2013.

  9. Lu, Z., and Edward M. Kwicklis, Numerical evaluation of effective unsaturated hydraulic properties of fractured rocks using a stochastic continuum approach,Vadose Zone Journal, doi:10.2136/vzj2011.0164, 2012.

  10. Robinson B. A.,Z. Lu, and D. Pasqualini, Simulating solute transport in porous media using model reduction techniques, Applied Mathematics, 3, 1161-1169, doi:10.4236/am.2012.310170, 2012.

  11. Robinson B. A., S. Chu, and Z. Lu, Simulation of radionuclide transport through unsaturated fractured rock: Application to Yucca Mountain, Nevada, Vadose Zone Journal, doi:10.2136/vzj2011.0142, 2012.

  12. Stauffer, P. H., and Lu, Z., Quantifying transport uncertainty in unsaturated rock using Monte Carlo sampling of retention curves, Vadose Zone Journal, doi:10.2136/vzj2011.0171, 2012.

  13. Lu, Z., and P. H. Stauffer, On estimating functional average breakthrough curve using time-warping technique and perturbation approach, Water Resources Research, 48, W05541, doi:10.1029/2011WR011506, 2012.

  14. Lu, Z., A. Wolfsberg, Z. Dai, and C. Zheng Characteristics and controlling factors of dispersion in bounded, randomly heterogeneous porous media, Water Resources Research,46, W12508, doi:10.1029/2009WR008392, 2010.

  15. Chang, H, D. Zhang, and Lu, Z., History matching of facies distribution with the EnKF and level set parameterization, Journal of Computational Physics, 229, 8011-8030, 2010.

  16. Deng, H., Z. Dai,A. Wolfsberg, Lu, Z., M. Ye, and P. Reimus, Upscaling sorption coefficient for fractured rocks with multimodal reactive mineral facies, Water Resources Research, 46, W06501, doi:10.1029/2009WT008363, 2010.

  17. Li, W., Z. Lu, and D. Zhang, Stochastic analysis of unsaturated flow with probabilistic collocation method,Water Resour. Res., 45, W08425, doi:10.1029/2008WR007530, 2009.

  18. Dai, Z., A. Wolfsberg, Z. Lu, amd H. Deng, Scale dependence of sorption coefficients for contaminant transport in saturated fractured rock, Geophys. Res. Lett., 36, L01403, dod:10.1029/2008GL036516, 2009.

  19. Li, C., Z. Lu, T. Ma, and X. Zhu, A simple kriging method incorporating multiscale measurements in geochemical surveys, Journal of Geochemical Exploration, 101, 147-154, 2009.

  20. Chen, M., A. Keller, and Z. Lu,, Stochastic analysis of transient three-phase flow in heterogeneous porous media, Stochastic Environmental Research and Risk Assessment, DOI 10.1007/s00477-007-0198-y, 2007.

  21. Dai, Z., A. Wolfsberg, Lu, Z., and B. Ritzi, Representing aquifer architecture in macrodispersivity models with an analytical solution of the transition probability matrix, Geophysical Research Letter, 34, L20406, doi:10.1029/2007GL031608, 2007.

  22. Lu, Z., D. Zhang, and B. A. Robinson, Explicit analytical solutions for one-dimensional steady state flow in layered, heterogeneous unsaturated soils under random boundary conditions, Water Resource Research , 43, W09413, doi:10.1029/2005WR004795, 2007.

  23. Chen, M., Z. Lu, and G. A. Zyvoloski, Conditional simulations of transient water-oil flow in randomly heterogeneous porous media, Stochastic Environmental Research and Risk Assessment, DOI 10.1007/s00477-007-0178-2, 2007.

  24. Liu, G., Z. Lu, and D. Zhang, Stochastic uncertainty analysis for solute transport in randomly heterogeneous media us ing a Karhunen-Loeve based moment equation approach, Water Resour. Res., 43, W07427, doi: 10.1029/2006WR005193, 2007.

  25. Lu, Z., and D. Zhang, Stochastic simulations for flow in nonstationary randomly heterogeneous media using a Karhunen-Loeve based moment-equation approach,SIAM Multiscale Model. Simul., 6(1), 228-245, 2007.

  26. Dai, Z., A. Wolfsberg, Z. Lu, and P. Reimus, Upscaling matrix diffusion coefficients for multimodal heterogeneous fractured rocks, Geophysical Research Letters, 34, L07408, doi:10.1029/2007GL029332, 2007.

  27. Zhang, D., Z. Lu, , and Y. Chen, Dynamic reservoir data assimilation with an efficient, dimension-reduced Kalman filter , SPE Journal , 12(1), 10.2118/95277-PA, 108-117, 2007.

  28. Liu, G., D. Zhang, and Z. Lu Stochastic uncertainty analysis for unconfined flow systems, Water Resources Research, 42, W09412, doi:10.1029/2005WR004766, 2006.

  29. Lu, Z., and B. Robinson, Parameter structure identification using the level set method, movie1, movie2, Geophys. Res. Letts., 33, L06404, doi:10.1029/2005GL025541, 2006.

  30. Lu, Z., and D. Zhang, Accurate, efficient quantification of uncertainty for flow in heterogeneous reservoirs using the KLME approach, SPE Journal, 11(2), 10.2118/ 93452-PA, 239-247, 2006.

  31. Chen, M., A. A., Keller, D. Zhang, Z. Lu, and G. A. Zyvoloski, A stochastic analysis of transient two-phase flow in heterogeneous porous media, Water Resources Research, 42, W03425, doi:10.1029/2005WR004257, 2006.

  32. Yuan, F, and Z. Lu, Analytical solutions for vertical unsaturated flow in rooted soils with variable surface fluxes, Vadose Zone Journal, 4(4), 1210-1218, 2005.

  33. Robinson, B. A., G. Cole, J. M. Carey, M. Witkowski,C W. Gable, Z. Lu, and R. Gray, A vadose zone flow and transport model for Los Alamos Canyon, Los Alamos, New Mexico , Vadose Zone Journal, 4(3), 729-943, 2005.

  34. Lu, Z. and D. Zhang, Analytical solutions of statistical moments for transient flow in two-dimensional bounded, randomly heterogeneous media, Water Resources Research, 41, W01016, doi:10.1029/2004WR3389, 2005.

  35. Chen, M., D. Zhang, A.A. Keller, and Z. Lu, A stochastic analysis of steady state two-phase flow in heterogeneous media , Water Resources Research, 41, W01016, doi:10.1029/2004WR003412, 2005.

  36. Lu, Z. , and D. Zhang, A comparative study on quantifying uncertainty of flow in heterogeneous media using Monte Carlo simulations, the conventional and the KL-based moment-equation approaches, SIAM J. on Scientific Computing, 26(2), 558-577, 2004.

  37. Lu, Z. and D. Zhang, Conditional simulations of flow in randomly heterogeneous porous media using a KL-based moment-equation approach, Advances in Water Resources, 27(9), 859-874, 2004.

  38. Lu, Z. and D. Zhang, Analytical solutions to steady state unsaturated flow in layered, randomly heterogeneous soils via Kirchhoff transformation, Advances in Water Resources, 27(8), 775-784, 2004.

  39. Yang, J., D. Zhang, and Z. Lu, Stochastic analysis of saturated-unsaturated flow in heterogeneous media by combining Karhunen-Loeve expansion and perturbation method, J. of Hydrology, 294, 18-38, 2004.

  40. Zhang, D. and Lu, Z. , Stochastic delineation of well capture zones, Stochastic Envir. Res. and Risk Assessment, 18(1), 39-46, 2004.

  41. Zhang, D. and Lu, Z. , An efficient, higher-order perturbation approach for flow in randomly heterogeneous porous media via Karhunen-Loeve decomposition,Journal of Computational Physics, 194(2), 773-794, 2004.

  42. Lu, Z. , and D. Zhang, On importance sampling Monte Carlo approach to flow and transport in heterogeneous geological formations, 26(11), 1177-1188, Advances in Water Resour. , 2003.

  43. Tartakovsky, D. M., Z. Lu, A. Guadagnini, and A. Tartakovsky, Unsaturated flow in heterogeneous soils with spatially distributed uncertain hydraulic parameters,J. Hydrology, 275, 182-193, 2003.

  44. Lu, Z. , and D. Zhang, Stochastic studies of well capture zones in bounded heterogeneous media, Water Resour. Res., 39(4), 1100, doi:10.1029/2002WR001633, 2003.

  45. Lu, Z. , and D. Zhang, Solute spreading in nonstationary flows in bounded heterogeneous saturated-unsaturated media, Water Resour. Res., 39(3), 1049, doi:10.1029/2001WR000908,2003.

  46. Keating, E., V. Vesselinov, E. Kwicklis, and Z. Lu, Coupling large- and local-scale inverse models of the Espanola basin, Ground Water, 41, 200-211, 2003.

  47. Lu, Z. , and D. Zhang, On stochastic modeling of flow in multimodal heterogeneous formations, Water Resour. Res., 38(10), 1190, doi:10.1029/2001WR001026, 2002.

  48. Lu, Z. , and D. Zhang, Stochastic analysis of transient flow in heterogeneous variably saturated porous media: the van Genuchten-Mualem constitutive model,Vadose Zone Journal, 1, 137-149, 2002.

  49. Khaleel, R., T.-C. J. Yeh, and Z. Lu, Upscaled flow and transport properties for heterogeneous unsaturated media, Water Resour. Res., 38(5), 1053, 10.1029/ 2000WR000072, 2002.

  50. Lu, Z. , S. P. Neuman, A. Guadagnini, and D. M., Tartakovsky, Conditional moment analysis of steady state unsaturated flow in bounded, randomly heterogeneous soils, Water Resour. Res., 38(4), 1038, 10.1029/2001WR000278, 2002.

  51. Zhang, D., and Z. Lu, Stochastic analysis of flow in a heterogeneous unsaturated-saturated system, Water Resour. Res., 38(2), 1018, doi:10.1029/2001 WR000515, 2002.

  52. Tartakovsky, D. M., S. P. Neuman, and Z. Lu, Conditional stochastic averaging of steady state unsaturated flow by means of Kirchhoff transformation, Water Resour. Res., 35(3), 731-745, 1999.