Los Alamos National Laboratory

Los Alamos National Laboratory

Delivering science and technology to protect our nation and promote world stability
Find Expertise logo

Profile Pages

View homepages for scientists and researchers. Explore potential collaborations and project opportunities. Search the extensive range of capabilities by keyword to quickly find who and what you are looking for.

Travis Sjostrom

Travis Sjostrom

Email
Phone (505) 665-0054

Capabilities

  • Computational Physics and Applied Mathematics
  • Numerical modeling
  • Molecular dynamics
  • Computer and Computational Sciences
  • Open MPI development
  • High performance computing
  • High Energy Density Plasmas and Fluids
  • High energy density physics (HED)
  • Direct numerical simulations
  • Materials
  • Materials behavior in extreme environments,
  • High pressure
  • High temperature
  • Nanotechnology
  • Thermodynamic
  • Statistical mechanics properties of materials
  • Equation of state (EOS)
  • Condensed matter theory

Expertise

Research in density functional theory development including orbital-free exchange-correlation and non-interacting free-energy functionals, as well as application to properties of warm dense matter including equation of state and transport properties. Equation of state modeling for the LANL SESAME database.

Numerical code development for density functional molecular dynamics and other applications in C, C++, and Fortran languages utilizing MPI.

 

Research Groups: Dense Plasma Theory Orbital-Free DFT SESAME EOS

Curriculum Vitae: here

Education

Ph.D. Physics, University of Utah, 2008

B.S. Physics, University of Utah, 2002

 

LANL Positions

Scientist, T-1, Physics and Chemistry of Materials, Feb 2016-present

Postdoctoral Associate, T-5, Applied Mathematics and Plasma Physics, Jan 2013-Feb 2016  

 

Publications

Papers on PROLA    Papers on arXiv

  1. T. Dornheim, S. Groth, T. Sjostrom, F. D. Malone, W. M. C. Foulkes, and M. Bonitz, Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit, Phys. Rev. Lett. 117, 156403 (2016).
  2. T. Sjostrom, S. Crockett, and S. Rudin, Multiphase aluminum equations of state via density functional theory, Phys. Rev. B 94, 144101 (2016).
  3. J. Daligault, S.D. Baalrud, C.E. Starrett, D. Saumon, and T. Sjostrom, Ionic Transport Coefficients of Dense Plasmas without Molecular Dynamics, Phys. Rev. Lett. 116, 075002 (2016).
  4. T. Sjostrom and J. Daligault, Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory, Phys. Rev. E 92, 063304 (2015).
  5. T. Sjostrom and S. Crockett, Orbital-free extension to Kohn-Sham density functional theory equation of state calculations: Application to silicon dioxide, Phys. Rev. B 92, 115104 (2015).
  6. T. Sjostrom and J. Daligault, Gradient corrections to the exchange-correlation free energy, Phys. Rev. B 90, 155109 (2014).
  7. T. Sjostrom and J. Daligault, Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes, Phys. Rev. Lett. 113, 155006 (2014).
  8. V.V. Karasiev, T. Sjostrom, and S.B. Trickey, Finite-temperature orbital-free DFT molecular dynamics: coupling Profess and Quantum Espresso, Comput. Phys. Commun. 185, 3240 (2014).
  9. V.V. Karasiev, T. Sjostrom, J.Dufty, and S.B. Trickey, Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations, Phys. Rev. Lett. 112, 076403 (2014).
  10. T. Sjostrom and J. Daligault, Nonlocal orbital-free noninteracting free-energy functional for warm dense matter, Phys. Rev. B 88, 195103 (2013).
  11. T. Sjostrom and J. Dufty, Uniform electron gas at finite temperatures, Phys. Rev. B 88, 115123 (2013).
  12. V.V. Karasiev, T. Sjostrom, D.Chakraborty, J.W. Dufty, F.E. Harris, K. Runge, and S.B. Trickey, Innovations in Finite-Temperature Density Functionals, Chapter in Frontiers and Challenges in Warm Dense Matter, Lecture Notes in Computational Science and Engineering, Vol. 96, F. Graziani et al. eds., (Springer 2014).
  13. V.V. Karasiev, T. Sjostrom, and S.B. Trickey, Generalized Gradient Approximation Non-interacting Free Energy Functionals for Orbital-free Density Functional Calculations, Phys. Rev. B 86, 115101 (2012).
  14. V.V. Karasiev, T. Sjostrom, and S.B. Trickey, Comparison of Density Functional approximations and the Finite-temperature Hartree-Fock Approximation in Warm Dense Lithium, Phys. Rev. E 86, 056704 (2012).
  15. T. Sjostrom, F.E. Harris, and S.B. Trickey, Temperature-Dependent Behavior of Confined Many-electron Systems in the Hartree-Fock Approximation, Phys. Rev. B 85, 045125 (2012).
  16. T. Sjostrom, D. C. Mattis, W.-G. Yin and W. Ku, Electronic Properties of Thin Film Periodic Nanostructures, J. Comput. Theor. Nanosci. Vol. 6, pp 403-417 (2009).
  17. T. Sjostrom, Electronic Energy Band Calculations in Nano-structures, Thesis, University of Utah (2008).
  18. D. C. Mattis and T. Sjostrom, Bloch's Theorem in Nanoarchitectures, Mod. Phys. Lett. B, Vol. 20, pp 501-513 (2006)
 

Documents and Files