Los Alamos National Laboratory
Profile Pages
Markus Berndt
Email
Phone (505) 6654711
Capabilities
 Computational Physics and Applied Mathematics
 Numerical modeling
 Coupled multiphysics simulations
 Computational fluid dynamics (CFD)
 Partial differential equations
 JacobiFree Newton Krylov Methods
 Arbitrary Eulerian Lagrangian (ALE) approach
 Multiscalemultiphasemulticomponent subsurface reactive flows
 Applied Math
 Mesh generation
 Mimetic finite difference methods for PDEs
 Adaptive mesh refinement (AMR)
 Computer and Computational Sciences
 High performance computing
 Nuclear Engineering and Technology
 Consortium for Advanced Simulation of Light Water Reactors (CASL)
 Weapons Science and Engineering
 Multiphysics codes
Expertise
 Computational Physics
 Numerical Analysis
 Applied Mathematics
Education

 Ph.D. in Applied Mathematics, University of Colorado at Boulder, 1999.
 M.S. in Applied Mathematics, University of Colorado at Boulder, 1996.
 Diplom Mathematiker, Heinrich Heine Universität Düsseldorf, Germany, 1994.
LANL Positions

 Deputy Group Leader, Computational Physics and Methods Group CCS2, 2015 to present
 Scientist, Computational Physics and Methods Group CCS2, 2009 to 2015
 Scientist, Applied Mathematics and Plasma Physics Group T5, 2008 to 2009.
 Technical Staff Member, Mathematical Modeling and Analysis Group T7, 2000 to 2008.
 Postdoctoral Research Associate, Mathematical Modeling and Analysis Group T7, 1999 to 2000.
Professional Societies

Society for Industrial and Applied Mathematics
Awards

 Distinguished Performance Award (large team), 2011.
Publications

Fluid Flow Investigations within a 37 Element CANDU Fuel Bundle Supported by Magnetic Resonance Velocimetry and Computational Fluid Dynamics, M. Piro, F. Wassermann, S. Grundmann, S. J. Kim, M. Christon, M. Berndt,
M. Nishimura, C. Tropea, International Journal of Heat and Fluid Flow, 66(2017): 27–42.
Integrated surface/subsurface permafrost thermal hydrology: Model formulation and proofofconcept simulations, S. L. Painter, E. T. Coon, A. Atchley, M. Berndt, R. Garimella, D. Moulton, D. Svyatskiy, C. J. Wilson, Water Resources Research, Vol 52, Issue 8, 2016, pp. 60626077.LargeEddy Simulation, Fuel Rod Vibration and GridtoRod Fretting in Pressurized Water Reactors, Mark A. Christon, Roger Lu, Jozsef Bakosi, Balasubramanya T. Nadiga, Zeses Karoutas, Markus Berndt, Journal of Computational Physics, Volume 322, 2016, pp. 142161.A Hybrid Incremental Projection Method for ThermalHydraulics Applications, Mark A. Christon, Jozsef Bakosi, Balasubramanya T. Nadiga, Markus Berndt, Marianne F. Francois, Alan Stagg, Yidong Xia, Hong Luo, Journal of Computational Physics, Volume 317, 2016, pp 381404.
Mesh Infrastructure for Coupled Multiprocess Geophysical Simulations. Rao V Garimella, William A Perkins, Mike W Buksas, Markus Berndt, Konstantin Lipnikov, Ethan Coon, John D Moulton, Scott L Painter, Procedia Engineering, Volume 82, 2014, pp 3445.
Polyhedral Mesh Generation and Optimization for Nonmanifold Domains. Rao V. Garimella, Jibum Kim, Markus Berndt, Proceedings of the 22nd International Meshing Roundtable, 2014, pp 313330.
Nonlinear Krylov acceleration applied to a discrete ordinates formulation of the keigenvalue problem. Matthew T. Calef, Erin D. Fichtl, James S. Warsa, Markus Berndt, Neil N. Carlson, Journal of Computational Physics, Volume 238, 1 April 2013, Pages 188–209.
Twostep hybrid conservative remapping for multimaterial arbitrary Lagrangian–Eulerian methods. Markus Berndt, Jérôme Breil, Stéphane Galera, Milan Kucharik, PierreHenri Maire, Mikhail Shashkov, Journal of Computational Physics, Volume 230, Issue 17, 20 July 2011, Pages 6664–6687.
Hybrid remap for multimaterial ALE. M. Kucharik, J. Breil, S. Galera, P.H. Maire, M. Berndt, M. Shashkov, Computers & Fluids, Volume 46, Issue 1, July 2011, Pages 293–297.
Using the feasible set method for rezoning in ALE. Markus Berndt, Milan Kucharik, Mikhail J. Shashkov, Procedia Computer Science, Volume 1, Issue 1, May 2010, Pages 1885–1892.
Reduceddissipation remapping of velocity in staggered arbitrary Lagrangian–Eulerian methods. David Bailey, Markus Berndt, Milan Kucharik, Mikhail Shashkov, Journal of Computational and Applied Mathematics, Volume 233, Issue 12, 15 April 2010, Pages 3148–3156.
Efficient nonlinear solvers for Laplace–Beltrami smoothing of threedimensional unstructured grids. Markus Berndt, J. David Moulton, Glen Hansen, Computers & Mathematics with Applications, Volume 55, Issue 12, June 2008, Pages 2791–2806.
Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals. M. Berndt, K. Lipnikov, M. Shashkov, M. F. Wheeler, and I. Yotov, SIAM J. Numer. Anal., 43(4) (2006), 1728–1749.
A node reconnection algorithm for mimetic finite difference discretizations of elliptic equations on triangular meshes. Markus Berndt, Konstantin Lipnikov, Mikhail Shashkov, and Pavel Váchal, Communications in Mathematical Sciences, Volume 3, Number 4 (2005), 665680.
A mortar mimetic finite difference method on nonmatching grids. Markus Berndt, Konstantin Lipnikov, Mikhail Shashkov, Mary F. Wheeler, Ivan Yotov, Numerische Mathematik, December 2005, Volume 102, Issue 2, pp 203230.
Analysis of FirstOrder System Least Squares (FOSLS) for Elliptic Problems with Discontinuous Coefficients: Part II, Markus Berndt, Thomas A. Manteuffel, and Stephen F. McCormick, SIAM J. Numer. Anal., 43(1) (2005), 409–436.
Analysis of firstorder system least squares (FOSLS) for elliptic problems with discontinuous coefficients: Part I, Markus Berndt, Thomas A. Manteuffel, Stephen F. McCormick, and Gerhard Starke, SIAM J. Numer. Anal., 43(1) (2005), 386–408.
Multilevel Accelerated Optimization for Problems in Grid Generation. Markus Berndt, Mikhail J Shashkov, Proceedings of the 22nd International Meshing Roundtable, 2003, pp 351 359.
Convergence of mimetic finite difference discretizations of the diffusion equation. M. Berndt, K. Lipnikov, D. Moulton, M. Shashkov, Journal of Numerical Mathematics. Volume 9, Issue 4 (2001), Pages 265–284.
Local error estimates and adaptive refinement for firstorder system least squares (FOSLS). Markus Berndt, Thomas A Manteuffel, Stephen F McCormick, Electronic Transactions on Numerical Analysis, Volume 6 (1997), Pages 3543.