Los Alamos National Laboratory

Los Alamos National Laboratory

Delivering science and technology to protect our nation and promote world stability

Profile Pages

View homepages for scientists and researchers. Explore potential collaborations and project opportunities. Search the extensive range of capabilities by keyword to quickly find who and what you are looking for.

Christoph Junghans

Christoph Junghans

Phone (505) 665-2278


Computational Co-Design - assessing tradeoffs in architecture, algorithms, and software stack design space for future exascale scientific application codes and platforms.

Multiscale Molecular Dynamics - simulating systems that involve different time- and length-scales, development of the adaptive resolution scheme (AdResS) to enable changing the number of degrees of freedom in molecular dynamics simulations on the fly.

Systematic coarse-graining - reducing the number of degrees of freedom representing a system, development of a unified software framework, the versatile object-oriented toolkit for coarse-graining applications (VOTCA) that implements different coarse-graining technique.


Dr. rer. nat. (Ph.D.) in Physics, Johannes Gutenberg University of Mainz, Germany, 2010

 Diploma (M.Sc.) in Physics, University of Leipzig, Germany, 2006.



LANL Positions

Staff Scientist, Applied Computer Science Group (CCS-7), 5/2014 - Present

Deputy Team Leader, Co-Design Team, (CCS-7), 1/2017 - Present

Director's Postdoctoral Fellow, Physics and Chemistry of Materials Group (T-1), 3/2013 - 4/2014

Postdoctoral research assistant, Physics and Chemistry of Materials Group (T-1), 11/2011 - 2/2013




Postdoc Distinguished Mentor Award, LANL, 2017

Classified as outstanding researcher, USCIS, 2015

The most cited article published in EPJE in the past 5 years, 2014

Los Alamos National Laboratory Director's Post-Doctoral Fellowship, 2013

Member of the Kavli Institute for Theoretical Physics, 2012

Participant of 60th Lindau Nobel Laureate Meeting, 2010

Diploma with honor (highest possible grade), 2006

Wolfgang Natonek award, University of Leipzig, 2005

Teubner award, Department for Physics and Earth Science, University of Leipzig, 2003




Reviewed Papers
  1. S. K. Gutierrez, K. Davis, D. Arnold, R. S. Baker, R. W. Robey, P. McCormick, D. Holladay, J. A. Dahl, J. Zerr, F. Weik, and C. Junghans,
    Accommodating Thread-Level Heterogeneity in Coupled Parallel Applications,
    in: Proceedings of the IEEE International Parallel and Distributed Processing Symposium 2017 (IPDPS '17),
    Orlando, FL, To appear May 2017.
  2. C. Junghans, A. Agarwal, and L. Delle Site,
    Computational efficiency and Amdahl’s law for the adaptive resolution simulation technique,
    in press: Comp. Phys. Comm. (2017).
  3. T. E. de Oliveira, P. A. Netz, K. Kremer, C. Junghans, and D. Mukherji,
    C-IBI: Targeting cumulative coordination within an iterative protocol to derive coarse-grained models of (multi-component) complex fluids,
    J. Chem. Phys. 144, 174106 (2016).
  4. R. S. Pavel, A. L. McPherson, T. C. Germann, and C. Junghans,
    Database Assisted Distribution to Improve Fault Tolerance for Multiphysics Applications,
    in: Proceedings of the 2nd International Workshop on Hardware-Software Co-Design for High Performance Computing(Co-HPC '15),
    ACM, New York, NY, USA, Article 4.
  5. S. Y. Mashayak, M. N. Jochum, K. Koschke, N. R. Aluru, V. Rühle, and C. Junghans,
    Relative entropy and optimization-driven coarse-graining methods in VOTCA,
    PLoS one 10, e131754 (2015).
  6. S. M. Mniszewski, C. Junghans, A. F. Voter, D. Perez, and S. J. Eidenbenz,
    TADSim: Discrete Event-based Performance Prediction for Temperature Accelerated Dynamics,
    Trans. Mod. Comp. Sim. 25, 15 (2015).
  7. D. G. Roehm, R. S. Pavel, K. Barros, B. Rouet-Leduc, A. L. McPherson, T. C. Germann, and C. Junghans,
    Distributed Database Kriging for Adaptive Sampling,
    Comp. Phys. Comm. 192, 138 (2015).
  8. S. Bevc, C. Junghans, and M. Praprotnik,
    STOCK: Structure Mapper and Online Coarse-Graining Kit for Molecular Simulations,
    J. Comp. Chem. 36, 467 (2015).
  9. C. Junghans, D. Perez and T. Vogel,
    Molecular Dynamics in the Multicanonical Ensemble: Equivalence of Wang-Landau Sampling, Statistical Temperature Molecular Dynamics, and Metadynamics,
    J. Chem. Theo. Comp. 10, 1843 (2014).
  10. B. Rouet-Leduc, K. Barros, E. Cieren, V. Elango, C. Junghans, T. Lookman, J. Mohd-Yusof, R. S. Pavel, A. Y. Rivera, D. Roehm, A. L. McPherson, T. C. Germann,
    Spatial adaptive sampling in multiscale simulation,
    Comp. Phys. Comm. 185, 1857 (2014).
  11. A. Nagarajan, C. Junghans and S. Matysiak,
    Multiscale simulation of liquid water using a four-to-one mapping for coarse-graining,
    J. Chem. Theo. Comp. 9, 5168 (2013).
  12. S. Bevc, C. Junghans, K. Kremer and M. Praprotnik,
    Adaptive resolution simulation of salt solutions,
    New J. Phys., 15, 105007 (2013).
  13. P. Ganguly, D. Mukherji, C. Junghans and N. F. A. van der Vegt,
    Kirkwood-Buff coarse-grained force fields for aqueous solutions,
    J. Chem. Theo. Comp., 8, 1802 (2012).
  14. S. Fritsch, S. Poblete, C. Junghans, G. Ciccotti, L. Delle Site and K. Kremer,
    Adaptive resolution molecular dynamics simulation through coupling to an internal particle reservoir,
    Phys. Rev. Lett. 108, 170602 (2012).
  15. S. Fritsch, C. Junghans and K. Kremer,
    Structure formation of toluene around C60: Implementation of the Adaptive Resolution Scheme (AdResS) into GROMACS,
    J. Chem. Theo. Comp. 8, 398 (2012).
  16. V. Rühle and C. Junghans,
    Hybrid approaches to coarse-graining using the VOTCA package: liquid hexane,
    Macromol. Theory Simul. 20, 472 (2011).
  17. C. Junghans, W. Janke and M. Bachmann,
    Hierarchies in Nucleation Transitions,
    Comp. Phys. Comm. 182, 1937 (2011).
  18. B. P. Lambeth, Jr., C. Junghans, K. Kremer, C. Clementi, and L. Delle Site,
    Communication: On the Locality of Hydrogen Bond Networks at Hydrophobic Interface,
    J. Chem. Phys. 133, 221101 (2010).
  19. C. Junghans and S. Poblete,
    A reference implementation of the adaptive resolution scheme in ESPResSo,
    Comp. Phys. Comm. 181, 1449 (2010).
  20. V. Rühle, C. Junghans, A. Lukyanov, K. Kremer and D. Andrienko,
    Versatile Object-oriented Toolkit for Coarse-graining Applications,
    J. Chem. Theo. Comp. 5, 3211 (2009) [Homepage] .
  21. C. Junghans, M. Bachmann and W. Janke,
    Statistical Mechanics of Aggregation and Crystallization for Semiflexible Polymers,
    Europhys. Lett. 87, 40002 (2009).
  22. H. Wang, C. Junghans and K. Kremer,
    Comparative atomistic and coarse-grained study of water: What do we lose by coarse-graining?,
    Euro. Phys. J. E 28, 221 (2009).
    "The most cited article published in the journal in the past 5 years" (2014)
  23. M. Praprotnik, C. Junghans, L. Delle Site and K. Kremer,
    Simulation approaches to soft matter: Generic statistical properties vs. chemical details,
    Comp. Phys. Comm. 179, 51 (2008).
  24. C. Junghans, M. Bachmann and W. Janke,
    Thermodynamics of Peptide Aggregation Processes: An Analysis from Perspectives of Three Statistical Ensembles,
    J. Chem. Phys. 128, 085103 (2008).
  25. C. Junghans, M. Praprotnik and K. Kremer,
    Transport properties controlled by a thermostat: An extended dissipative particle dynamics thermostat,
    Soft Matter 4, 156 (2008).
  26. C. Junghans, M. Bachmann and W. Janke,
    Microcanonical Analyses of Peptide Aggregation Processes,
    Phys. Rev. Lett. 97, 218103 (2006).
  27. C. Junghans and U. H. E. Hansmann,
    Numerical Comparison of Wang Landau Sampling and Parallel Tempering for Met-enkephalin,
    Int. J. Mod. Phys. C 17, 817 (2006).
  1. C. Junghans,
    Between the Scales: Water from different Perspectives,
    PhD Thesis, Johannes Gutenberg-Universität Mainz (2010), Google Books.
  2. C. Junghans,
    Aggregation of Mesoscopic Protein-like Heteropolymers,
    Diploma Thesis, Universität Leipzig (2006).
Book Chapters
  1. L. Delle Site, A. Agarwal, C. Junghans, and H. Wang,
    Adaptive Resolution Simulation as a Grand Canonical Molecular Dynamics Scheme: Principles, Applications, Perspectives,
    in: C. Clementi (Ed.),
    Multiscale Methods in Molecular Biophysics,
    Series in Computational Biophysics, CRC Press (2014).
  2. E. Apol, R. Apostolov, H.J.C. Berendsen, A. van Buuren, P. Bjelkmar, R. van Drunen, A. Feenstra, S. Fritsch, G. Groenhof, C. Junghans, P. Kasson, P. Larsson, P. Meulenhoff, T. Murtola, S. Pall, S. Pronk, R. Schulz, M. Shirts, A. Sijbers, P. Tieleman, B. Hess, D. van der Spoel, and E. Lindahl,
    Gromacs User Manual Version 4.6,
    gromacs.org (2013).
  3. C. Junghans, M. Praprotnik and L. Delle Site,
    Adaptive Resolution Schemes,
    in: J. Grotendorst, N. Attig, S. Blügel and D. Marx (Eds.),
    Multiscale Simulation Methods in Molecular Sciences, NIC Series Vol. 42, Jülich (2009), 359.
Other Publications
  1. C. Junghans, A. K. Hüttel and U. Müller,
    Gentoo Linux: Quelltexte und Rolling Releases,
    c't Magazin 16, 162 (2012).
  2. T. Weidauer, C. Junghans, O. Pauluis, M. Pütz and J. Schumacher,
    Shallow Moist Convection,
    in: G. Münster, D. Wolf, M. Kremer (Eds.),
    NIC Symposium 2010, IAS Series Vol. 3, Jülich (2010), 373.
  3. C. Junghans, M. Bachmann and W. Janke,
    Phase Separation in Peptide Aggregation Processes - Multicanonical Study of a Mesoscopic Model,
    in: U. H. E. Hansmann, J. Meinke, S. Mohanty and O. Zimmermann (Eds.),
    From Computational Biophysics to Systems Biology 2007 , NIC Series Vol. 36, Jülich (2007), 169.