Skip to Content Skip to Search Skip to Utility Navigation Skip to Top Navigation Skip to Content Navigation
Los Alamos National Laboratory
Los Alamos National Laboratory links to site home page
Delivering science and technology to protect our nation and promote world stability
LANL

Scientists ignite aluminum water mix

Don't worry, that beer can you’re holding is not going to spontaneously burst into flames.
June 30, 2014
Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture.  In open air, the compound burns like a Fourth of July sparkler.

Los Alamos National Laboratory chemist Bryce Tappan ignites a small quantity of aluminum nanoparticle water mixture. In open air, the compound burns like a Fourth of July sparkler.

Contact  

  • Kevin N. Roark
  • Communications Office
  • (505) 665-9202
  • Email
"Knowing much more about the mechanisms at work in metal combustion gives you a chance to refine the models that govern these reactions," Tappan added.

Combustion mechanism of aluminum nanoparticles and water published in prestigious German chemistry journal

LOS ALAMOS, N.M., June 30, 2014—Don't worry, that beer can you’re holding is not going to spontaneously burst into flames, but under the right circumstances aluminum does catch fire, and the exact mechanism that governs how, has long been a mystery.

Now, new research by Los Alamos National Laboratory explosives scientist Bryce Tappan, published as the cover story in the prestigious German journal of chemistry Angewandte Chemie, for the first time confirms that chemical kinetics — the speed of a chemical reaction — is a primary function in determining nanoaluminum combustion burn rates.

"It's been long understood that nanoscale aluminum particles, 110 nanometers and smaller, are highly reactive. Aluminum particles at this scale have been used in novel explosives, propellants, and pyrotechnic formulations," said Tappan. "The understanding of the combustion mechanism impacts how we look at the design of ever smaller aluminum particles like molecular aluminum clusters as well as possible nanoaluminum applications like hydrogen fuel storage devices — and this might be a little 'out there' — but also energetic formulations that could use extraterrestrial water as the oxidizer in rocket fuel."

Tappan and his co-authors, Matthew Dirmyer of Los Alamos, and Grant Risha of Penn State University, made this discovery by looking for the "kinetic isotope effect" in nanoaluminum particles 110, 80, and 38 nanometers in size. The particles consisted of a "core-shell" structure with an elemental aluminum core and a two to five nanometer oxide shell.  The particles are mixed with deionized water, H2O, or deuterium, D2O, to the gooey consistency of cake batter.

The kinetic isotope effect is observed in a chemical reaction when an atom of one of the reactants (water) is substituted with its isotope (deuterium, or "heavy water") and the two reactions are compared for differences.  This effect is considered one of the most important tools in determining chemical reaction mechanisms.

Tappan and his team obtained burn rates by putting water/deuterium nanoaluminum mixtures in small glass tubes, placing the tubes in pressure vessels, igniting the nanoaluminum with a laser and taking measurements as the mixture burned. (Burn rate experiment video: http://youtu.be/PqzQ3aXZeNk

For many years it’s been proposed that other mechanisms like oxygen diffusion through the particles, or tiny aluminum “explosions” in the mixture might govern the rates of the burning process.  “Now we know that reaction kinetics are a major player,” said Tappan.

"Knowing much more about the mechanisms at work in metal combustion gives you a chance to refine the models that govern these reactions," Tappan added. "This fundamental knowledge gives us a window on how to better control these processes."

The research was funded by the Laboratory Directed Research and Development program at Los Alamos National Laboratory, with additional funding from the Defense Threat Reduction Agency.

Caption for image below: When dry, aluminum nanoparticles look like simple dark gray dust.

About Los Alamos National Laboratory

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.


Innovations for a secure nation

Novel rocket design flight tested

Novel rocket design flight tested

The new rocket fuel and motor design adds a higher degree of safety by separating the fuel from the oxidizer, both novel formulations that are, by themselves, not able to detonate.

» All Innovations

Calendars

Contact LANL

Mailing Address
P.O. Box 1663
Los Alamos, NM 87545

Journalist Queries
Communications Office
(505) 667-7000

Directory Assistance
(505) 667-5061

All Contacts, Media







Visit Blogger Join Us on Facebook Follow Us on Twitter See our Flickr Photos Watch Our YouTube Videos Find Us on LinkedIn Find Us on iTunes