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Abstract The traditional contour method maps a single
component of residual stress by cutting a body carefully in
two and measuring the contour of the cut surface. The cut also
exposes previously inaccessible regions of the body to
residual stress measurement using a variety of other techni-
ques, but the stresses have been changed by the relaxation
after cutting. In this paper, it is shown that superposition of
stresses measured post-cutting with results from the contour
method analysis can determine the original (pre-cut) residual
stresses. The general superposition theory using Bueckner’s
principle is developed and limitations are discussed. The
procedure is experimentally demonstrated by determining the
triaxial residual stress state on a cross section plane. The 2024-
T351 aluminum alloy test specimen was a disk plastically
indented to produce multiaxial residual stresses. After cutting
the disk in half, the stresses on the cut surface of one half were
determined with X-ray diffraction and with hole drilling on
the other half. To determine the original residual stresses, the
measured surface stresses were superimposed with the change
stress calculated by the contour method. Within uncertainty,
the results agreed with neutron diffraction measurements
taken on an uncut disk.

Keywords Residual stress . Contour method . Neutron
diffraction . Superposition . Sectioning . Hole . Drilling .
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Introduction

There are many important applications where it is very
difficult to measure internal residual stresses with current
technology. One example is axial stresses in girth (circum-
ferential) welds on piping and pressure vessels. Circumfer-
ential cracks cause the greatest concern for rupture in
nuclear power plants [1, 2]. To remain in service, such
defected components must be demonstrated to be safe
against rupture. Axial residual stresses are a main driver for
the growth of circumferential cracks and must be known for
crack growth and leak-before-break analyses [3–5]. Mea-
surement of those stresses is difficult. Neutron diffraction is
the most commonly published technique for measuring
internal stresses. However, some components are too thick
for neutron measurement and welds are often problematic
because of spatial variations in the reference lattice constant
caused by chemistry changes in and around the weld [6–8]
or the presence of microstresses [8]. The deep hole method
[9] has had the most success on very thick components but
measures only a 1D stress profile. The contour method [10]
can measure a radial-axial cross-section map but only of the
hoop stress instead of the axial stress, e.g., [11, 12]. There
are many other examples of important applications where
no one technique can perform the complete residual stress
characterization.

Currently, many larger parts are sectioned or otherwise
altered in order to provide access and thereby exploit the
capabilities of advanced neutron and synchrotron diffrac-
tion instruments [13–23] or laboratory X-rays [24].
Assumptions are often made that the sectioning does not
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change the stresses being measured. Those assumptions
should then limit the subsequent measurements to regions
of the part unaffected by the sectioning.

This paper presents a procedure for accurately obtaining
internal stress access by first sectioning, i.e., cutting, a part
in conjunction with a contour method measurement. Then
any technique, usually not contour, can be used to measure
the partially relaxed stresses at any location, surface or
subsurface, that is now accessible in the sectioned part. The
same elastic finite element analysis that is used for the
traditional contour method data reduction also quantifies
the elastic relaxation of all other stresses in the part.
Therefore, superposition of the post-sectioning measure-
ments with the appropriate results from the contour method
analysis determines the original residual stresses at the
measurement locations. The contour method calculations
also quantitatively identify regions of the part that are
unaffected by sectioning.

The procedure is experimentally validated in this
paper for a particular application of the theory: the
surface-superposition contour method to measure the
triaxial stress state on a plane. After a contour method
cut to measure the out-of-plane stress component, the
remaining in-plane stresses on the cut surface are
measured using two independent techniques: laboratory
X-ray diffraction and incremental hole drilling. Superpo-
sition of the measured surface stresses with the calculat-
ed stress relaxation then determines the original, internal
stresses. The results are compared with neutron diffrac-
tion measurements.

Principle and Assumptions

Principle

As a review of previous work [10], Fig. 1 illustrates
Bueckner’s superposition principle [25] as applied to
sectioning parts for residual stress measurement. Step A
shows the undisturbed part with the residual stresses that
are to be determined. The part is cut in two on the plane x=
0 and deforms as residual stresses are released by the cut. B
shows half of the part in the post-cut state with partially-
relaxed stresses. The surface contour is measured at this
point. C is an analytical step that starts with a stress-free
body and then the surface created by the cut is displaced
back to its original flat shape. Assuming elasticity, super-
imposing the partially relaxed stress state in B with the
change in stress from C gives the original residual stress
throughout the part:

sAðx; y; zÞ ¼ sBðx; y; zÞ þ sCðx; y; zÞ ð1Þ

where σ without subscripts refers to the entire stress tensor.
σA can be referred to as the original stress, σB as the
remaining stress, and σC as the change stress since it
quantifies how much the stress has relaxed from sectioning.

Traditional implementation of the contour method only
determines the normal stress, σx, and only on the plane of
the cut. This paper presents the first use of the superposition
principle to measure other stress components and to
measure stresses away from the cut plane. To qualitatively
illustrate superposition for such stresses, Fig. 2 represents a
section taken through z=0 in Fig. 1. The figure was made
from an elastic, plane strain finite element model with
initial stresses used to represent residual stresses. Each half
of Fig. 2 was taken from the same finite element analysis,
but with different stress components plotted. The left half of
the figure is colored by the magnitude of σx and the right by
σz, which was initially equal to σx. Step B shows that far
away from the cut, both stress components are undisturbed
from their original value in A. The amount of relaxation
increases closer to the cut surface, with σx fully relaxed on
the cut surface as required by the free surface condition. σz
is only partially relaxed on the free surface. The stresses in
C from forcing the surface back flat are equal to the stresses
that were relaxed by the sectioning.

For experimentally accessing other stress components
and stresses away from the cut plane with this superposition
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Fig. 1 Bueckner’s superposition principle applied to residual stresses
in a sectioned part: A = B + C
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principle, the full stress tensor σC is calculated as shown in
Fig. 1 from the measured surface contour data with a single,
3-D, elastic finite element (FE) analysis. In the sectioned
part, one or more components of the tensor σB are measured
at any location using any appropriate technique for residual
stress measurement. Simple pointwise superposition with
equation (1) returns the original residual stresses, σA, for the
locations and stress components measured in the sectioned
part. Stresses determined by this superposition are called
the “reconstructed” stresses.

The contour method calculations also quantitatively
identify regions of the part that are unaffected by
sectioning. The bottom row in Fig. 2 shows the results of
the contour calculations: the change stresses for all stress
components throughout the sectioned part. Anywhere that
these stresses are of negligible magnitude, the stresses are
unaffected by sectioning as can be seen by equation (1) and
in Fig. 2. A measurement of the stresses at such locations in
the sectioned part gives the original residual stresses
without any need for superposition.

It should be emphasized that only a single FE analysis is
used for 1) the calculation of the normal stress σx from the
measured surface contour, 2) determining any component
of the stress tensor anywhere in the sectioned part by
superposition with additional measurements, and 3) for
quantification of regions unaffected by the sectioning. The
analysis is the one at the bottom of Fig. 1. Displacement
conditions are applied to the cut surface to return the
material points to their original location. As detailed
previously, the simultaneous solution for all of the stresses
is unique because it is a Kirchhoff boundary value problem
with fully prescribed boundary conditions [10]. The accuracy
of the unique solution depends on the validity of the
assumptions used to experimentally implement the theory.

Assumptions

Standard assumptions apply for residual stress measure-
ment using relaxation methods [26]. The stress relaxation
after material removal is assumed to occur elastically. Any
technique used to section the part is assumed to not
introduce significant stresses. It must be assumed that the
cut is constant width relative to the undeformed (step A in
Fig. 1) state of the body, a standard contour method
assumption about the cut [27]. Satisfying that assumption
requires the part to be securely clamped during cutting so
that the material at the tip of the cut is not significantly
stretched or compressed as cutting progresses and stresses
relax.

Additional assumptions unique to the contour method
should be discussed considering the superposition approach
proposed in this paper. Because the measured contour shape
does not provide information about the transverse defor-
mation, displacements in step C are only applied in the x-
direction. Information about the shear stresses released on
the plane of the cut, tAxyð0; y; zÞ and tAxzð0; y; zÞ is lost. For
the traditional contour method where only the normal stress
on the cut surface, sA

x ð0; y; zÞ, is determined, averaging the
contours on the two sides is sufficient to remove errors
caused by the released shear stresses [10]. For the general
case of measuring other stresses, one must measure the
remaining stresses, σB, on both halves of the part and
average them to ensure accurate results. Numerical simu-
lations indicate, however, that this anti-symmetric shear-
stress effect is insignificant for most practical applications
[28] because those two shear stresses tend to have smaller
magnitudes and their effect on σB is reduced relative to
normal stresses [29]. Because the contours on the two sides
are averaged, it is assumed that the part is geometrically
symmetric about the cut plane. Significant stiffness differ-
ences on the two sides of the cut, such as cutting very near
one end of a long part, can cause errors if not treated
correctly.

Fig. 2 Two-dimensional plot of elastic superposition principle.
Colored by σx on left half and σz on right half to show different
behaviors of normal stress versus transverse stress. Deformations are
exaggerated
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Special Case: Surface Superposition

The surface-superposition contour method, a particular
implementation of the broader theory, is experimentally
validated in this paper. In the surface-superposition contour
method, multiple stresses can be determined on the cut
surface x=0. Equation (1) for this case becomes:

sA
x ð0; y; zÞ ¼ sC

x ð0; y; zÞ
sA
y ð0; y; zÞ ¼ sB

y ð0; y; zÞ þ sC
y ð0; y; zÞ

sA
z ð0; y; zÞ ¼ sB

z ð0; y; zÞ þ sC
z ð0; y; zÞ

tAyzð0; y; zÞ ¼ tByzð0; y; zÞ þ tCyzð0; y; zÞ : ð2Þ

The first line of equation (2) corresponds to the traditional
contour method to measure σx in which σx in step B of
Figs. 1 and 2 is zero because of the free surface condition. To
determine the other stress components by superposition and
equation (2), any or all of sB

y ; s
B
z ; and t

B
yz are measured on

the cut surface using a technique such as hole drilling or X-
ray diffraction.

Because stresses are measured on the cut surface, an
additional experimental step and assumption are required. The
cutting process generally induces additional stresses in a thin
layer on the cut surface [30]. The amount of stressed material
is usually too small to have a significant effect on the surface
contour measured with the traditional contour method, and
so does not invalidate the assumption of stress-free cutting in
that case. However, for the surface-superposition contour
method, the cutting stresses can have a large effect on
surface stresses measured directly on the cut surface. In other
words, one wants to measure the surface stresses after elastic
relaxation, not the cutting-induced stresses. Therefore, to
satisfy the stress-free cutting assumption, the thin layer of
material affected by machining must be removed by a stress-
free process such as electrochemical layer removal. Consid-
ering that the problem is elastic and path independent,
removing the layer is equivalent to a cut having been made
at the final surface location. It must therefore be assumed
that the original residual stresses were not significantly
different on the cut plane compared to the new surface
location displaced by the thickness of the removed layer, δ:

sAð0; y; zÞ � sAð0� d; y; zÞ ð3Þ
Considering the small thickness of the layer that must be

removed, this is usually a very reasonable assumption.

Experimental Validation

Specimen

A specially designed specimen was used for validation. As
described in detail elsewhere and illustrated in Fig. 3, a disk

was indented to introduce residual stresses from plastic
deformation [31–33]. The disk was 60-mm in diameter with
a 10-mm thickness chosen to make the part accessible to
independent neutron diffraction measurements of residual
stresses. Opposing hardened steel indenters loaded 13-mm
diameter regions centered on the faces of the disk, and then
the load was removed. Plastic deformation resulted in
residual stresses of biaxial compression under the indenter
and tensile hoop stress outside the indented region.

Disk specimens were fabricated for this study from
12.7 mm thick plate of aluminum alloy 2024-T351. The
T351 temper indicates solution heat treat followed by rapid
quenching and then plastic stretching of 1–3% in the rolling
direction for stress relief. Slitting method [34] tests on the
as-received plate showed that the residual stresses had
magnitudes of 10 MPa or less in both in-plane directions.
The average grain width in the plate was 30 μm in the
short-transverse (plate thickness) direction, 340 μm in the
rolling direction, and 160 μm in the long transverse
direction. Compression testing revealed no elastic anisotro-
py but significant plastic anisotropy, with the yield strength
in stretching and through-thickness directions about
360 MPa compared to 320 MPa in the in-plane direction
transverse to stretching.

The disks were indented quasi-statically with a peak load
of 99.6 kN [28]. Unlike the previous case of a stainless
steel with isotropic plasticity [31], an accurate FE model of
the indentation process in 2024-T351 has not yet been
constructed because plastic anisotropy cannot be modeled
at the same time as combined cyclic hardening in common
commercial software.

Figure 4 illustrates the test configuration. The origin of
the cylindrical coordinate system was the center of the disk.

Loading direction

Loading direction

Disk

Indenters (A2 steel)

r

z

Fig. 3 Schematic of indentation process used to produce residual
stresses in disk specimen
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A diametrical plane oriented approximately normal to the
rolling and plastic stretch direction of the plate was the
plane on which all measurements were taken and on which
the disk was sectioned. For this cut plane and cylindrical
coordinates, equation (2) becomes

sA
q ðq ¼ 0; r; zÞ ¼ sC

q ð0; r; zÞ
sA
z ð0; r; zÞ ¼ sB

z ð0; r; zÞ þ sC
z ð0; r; zÞ

sA
r ð0; r; zÞ ¼ sB

r ð0; r; zÞ þ sC
r ð0; r; zÞ

tArzð0; r; zÞ ¼ tBrzð0; r; zÞ þ tCrzð0; r; zÞ : ð4Þ

where for convenience in the equation, the entire cut plane
is defined by θ=0. Although the superposition method
could be applied to any location on the sectioning plane,
time considerations limited the surface stress measurements
to a linear scan of σr and σz along the mid-thickness (z=0).
The nearly axisymmetric nature of the stresses meant that
the shear stresses released on the cut plane, trq , and tzq,
could reasonably be assumed small. Therefore, the super-
position results were considered separately on each half of
the disk rather than averaged.

Sectioning and Contour Method

For the sectioning operation, established contour method
procedure was used to map the hoop stresses. The cut was
made using wire electric discharge machining (EDM) using
a 100-μm-diameter brass wire. Skim-cut settings were used
to minimize introduced stresses [30]. The cutting direction
relative to the coordinates used to plot results was such that
the cut started at the r=+30 mm edge and completed at
r=−30 mm. A test cut in the same material indicated that
the cut width was 130 μm. The specimen was clamped on
both sides of the cut during cutting to minimize deforma-
tion as the stresses relaxed. After cutting, the specimen was
removed from the fixture and the contours of the cut
surfaces were measured on a 0.1-mm×0.04-mm grid using

a scanner with a confocal laser ranging probe [35]. The
cutting and contouring were repeated on an unindented disk
as a control to confirm the cut flatness in stress-free
material.

The raw contour data was processed to calculate residual
stresses using established procedure [11, 31, 35]. The data
from each of the two halves were interpolated onto a
rectangular grid and then the two were averaged. The
averaged data was smoothed using quadratic splines with
knot spacing of 3.33 mm, giving about 1-mm spatial
resolution for the surface shape. A 3D mesh of half of the
disk was constructed using 51,920 linear hexahedral 8-node
elements with reduced integration (C3D8R). To compute
residual stresses from the smoothed data, the initially flat
surface in the FE model was elastically deformed using
x-direction displacement boundary conditions into the
opposite shape of the measured contour with the ABAQUS
code [36]. From the results of the mechanical testing of the
base material, the elastic modulus was 73.2 GPa and a
Poisson’s ratio was 0.33. From this single FE calculation,
all of the σC stresses from equation (4) were determined on
the cut surface. The random uncertainties in the contour
method residual stresses were estimated pointwise [35]
with average one standard deviation uncertainties of
about ±12 MPa for the hoop stress and about half that for
the in-plane stresses. Systematic errors of similar magnitude
are possible [27].

Surface Preparation

The cut surfaces were prepared for stress measurement.
First, the EDM-affected layer was removed by wet polish-
ing with 600 grit SiC paper. Wet polishing with 800 grit
SiC paper was then used to remove scratches from the first
polish. Finally, electropolishing for 6 min with 10 Vapplied
in a 65°C mixed phosphoric/sulphuric acid bath was used
to remove approximately 115 μm from each surface.

X-ray Surface Stress Measurement

On one half of the disk, the radial and axial stresses along
the mid thickness (z=0) of the cut surface were measured
using a local strain technique on a Philips X’Pert X-ray
diffractometer using Cu Kα radiation [37–40]. Measure-
ments were taken approximately every 5 mm from r=0 to
r=±25 mm. The irradiated area was 3 mm2. The position of
the peak arising from diffraction from the Al {422} planes
was measured (136°<2θ<139°). Sixteen scans were per-
formed for each stress measurement using different =

values within the range 0≤=≤60° (=—angle between the
surface normal and the bisector of source and diffracted
X-ray beam). The resulting spectra were analyzed using
Philips X’pert Stress Software (version 1.0a) with peak

z

r

θ

plate rolling/stretch
direction

sectioning cut plane

Fig. 4 Contour method sectioning plane orientation in aluminum
disk. All residual stress measurements were performed on this plane.
Locations of holes that were drilled later are shown on mid-thickness
of cut plane

Exp Mech



locations determined with a Pearson VII fitting technique.
In all cases these 16 scans were used to calculate the curve
fit in the d (lattice spacing) versus Sin2= plots. The X-ray
elastic constant, (1/2)S2 was 19.07 (TPa−1) taken from
literature for the {422} planes [41]. Errors displayed on the
figures were calculated from the standard error of the best
straight line fit.

Hole Drilling Surface Stress Measurement

On the other half of the disk, the radial and axial stresses
along the mid thickness (z=0) of the cut surface were
measured using Electronic Speckle Pattern Interferometry
(ESPI) hole drilling [42, 43]. First, nine holes were drilled
every 6 mm (r=0, ±6, ±12, ±18, ±24 mm, see Fig. 4)
using a 1.59-mm diameter drill with 15,000 RPM
rotational speed and a feed rate of 0.05 mm/s. Next, 10
holes were drilled between and outside the previous holes
(r=±3, ±9, ±15, ±21, ±27 mm) using a 0.79-mm diameter
drill with a 10,000 RPM rotational speed. Rotational
speeds and feed rates were selected by checking for
drilling-induced stress effects in stress-free material. All
holes were drilled in four 0.1 mm depth increments with
ESPI measurements taken between each increment. Based
on the analytic solution for the stress concentration around
a hole, the neighboring holes were expected to have less
than 2% effect on measured stresses for the first 9 holes
and 5% for the last 10 holes. Stresses were calculated
using the full displacement field given by the ESPI data
[44]. The stress from the shallowest (0.1 mm) depth
increment was taken as the surface stress for superposi-
tion. One standard deviation random uncertainties for
these measurements were estimated at ±10–15 MPa with
possible systematic errors of similar magnitude [45, 46].

Neutron Diffraction Measurements

Neutron diffraction (ND) measurements were made using
the SMARTS instrument [47] at the Los Alamos Neutron
Science Center (LANSCE). Because neutron measurements
were performed after the other measurements, a separate
disk specimen that was nominally identical to the sectioned
one was used. Measurement were taken along the mid-
thickness line, z=0. Measurement locations were separated
1.7 mm near the center of the disk and by 3.4 mm beyond a
radius of 12 mm. The gauge volume was confined to 2×2×
2 mm3 using incident slits and radial collimators. The count
time for each measurement was about 30 min. Because of
the small gauge volume and the relatively weak scattering
from aluminum, the diffraction patterns were only analyz-
able using full-pattern Rietveld analysis [48, 49]. Rietveld
analysis leads to the determination of an average lattice
parameter, ai, based upon all available peaks, where i

indicates the direction relative to the specimen; i=r, θ, z for
the radial, hoop and axial directions, respectively. The
typical error-bar on the measured lattice parameters, taken
as the estimated standard deviation from the Rietveld
refinement, is about 75–150 με (microstrain, ×10−6 or
equivalent to parts per million), depending on the position
within the sample.

One advantage of the Rietveld analysis is that the lattice
parameters, and thus lattice strains, determined from the
refinements are average values representative of the bulk,
and hence the residual stress components can be evaluated
directly using Hooke’s law employing the regular bulk
elastic constants [50]. The lattice strains were calculated
from equation (5):

"i ¼ ai
a0i

� 1; i ¼ r; q; z: ð5Þ

Stress-free reference lattice parameters, ai0, were measured
on small cubes cut from the same plate as the indented disk.
Based on additional neutron measurements through the
thickness of the low-stress stretched plate compared with
the precise slitting measurements, one standard deviation
random uncertainties were estimated at ±15 MPa. 15 MPa
was about 50% larger than the estimate based on peak
fitting uncertainties alone, and that was probably the result
of other error sources that were not accounted for. Because
of the ai0 measurements, a systematic shift of similar
magnitude to the random uncertainties was possible.

Results

Figure 5 shows the neutron diffraction residual stress results
on the mid-thickness of the plane indicated in Fig. 4.
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Fig. 5 Neutron diffraction stresses measured on the disk at mid-
thickness
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Because of time limitations, not all planned measurements
for positive radii were completed. Where measurements
were taken at the planned resolution with overlapping
volumes, data points are connected by lines in order to
guide the eye. The stresses show the expected trends of
nearly biaxial compression in the indented region and
tensile hoop stress outside that region. For axisymmetric
stresses, the hoop and radial stress would need to be equal
at r=0 by the equilibrium condition. However, because of
the plastic anisotropy, the stresses are asymmetric and the
observed difference is allowed. The difference is approxi-
mately equal to the difference between flow stresses in the
two in-plane directions of the disk. The axial stresses are
small magnitude because of the small disk thickness and
because the plastic strains induced by indentation have less
spatial variation in the axial direction.

Figure 6 shows the average of the surface contours
measured on the opposing surfaces created by cutting the
disk in half. The surface contour was high in the central
region of the disk with a peak-to-valley magnitude of about
35 μm. The average surface contour measured on the
unindented disk as a control was flat to within measurement
resolution, confirming the quality of the EDM cut.

Figure 7 shows the 3D FE model of the half-disk after it
has been elastically deformed on the cut surface into the
opposite of the measured contour (Fig. 6). In this state, the
stresses are the change stresses, σC from equation (1). The x
direction stresses, which on the cut plane are the hoop
stresses, are colored in Fig. 7. Note that the stresses decay
to near zero away from the cut surface.

Figure 8 shows, on the sectioning plane of Fig. 4, the
stresses returned by the contour method data analysis of

Fig. 7. These are the σC stresses from equation (4), and
without superposition only the hoop stresses are equal to
the original residual stresses. In Fig. 9 the hoop stresses
extracted along the mid-thickness are compared directly
with the neutron results. Based upon the spatial variation
observed for the contour method, see Fig. 8, the spatial
averaging of the neutron data over the 2-mm cube sampling
volumes does not significantly affect the comparison.
Agreement is generally good, with most of the points being
within the one standard deviation uncertainties. The peak
stress in the contour results is 1 mm off center. Because of
the precision fabrication and indentation, the real stresses
are expected to be centered to within 0.1 mm of the disk
center. The error is postulated to be caused by deviations
from the assumption that the cut width is constant relative
to the undeformed part. A more robust clamping arrange-
ment, e.g., [51], should reduce such errors, or it could be
corrected for [27]. Metallographic examination revealed
that the rolling direction was about 20° away from the
normal to the cut plane for the specimen measured by the
contour method. The neutron specimen was aligned
correctly as shown in Fig. 4. An analysis based on the
plastic anisotropy measured in compression testing estimat-
ed that the residual stress difference between these two
orientations to be 4 MPa or less, which is insignificant
compared to the uncertainties.

Figures 8 and 9 are the results from a traditional contour
method analysis and where the measurement would
traditionally finish. To determine the original radial and
axial stresses with the new procedure proposed in this
paper, measured surface stresses were superimposed point-
wise using equation (4) with contour results extracted from
Fig. 8 at the appropriate point locations. Uncertainties from
individual measurements were combined in quadrature to
estimate the uncertainties in the sum. Figure 10 shows the
radial stress superposition, with X-ray results on one half of
the disk and hole drilling on the other half. The shapes of
the stress distributions are quite different for the remaining

Fig. 7 3D finite element model used to calculate stresses for the
contour method. X-direction boundary conditions have forced the cut
surface into the opposite of the measured surface contour of Fig. 6.
Displacements are exaggerated by a factor of 200

Fig. 6 Surface contour measured on cut plane (Fig. 4) of indented
disk
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stresses, σB, and the change stress, σC, indicating the
importance of both of the contributions to superposition.
Figure 11 shows the axial stress superposition with X-ray
results on one half of the disk and hole drilling on the other
half. The axial stresses are generally of small magnitude.

Figure 12(a) compares the radial stresses reconstructed
using superposition with the neutron results from the
nominally identical second disk. The reconstructed radial
stresses agree within uncertainty bars with the neutron
results at about 85–90% of the locations, which is better
than expected for one standard deviation uncertainties. The

X-ray and hole drilling reconstructions agree better with
each other and with neutron results for positive radii than
for negative. The +r/-r asymmetry in the contour results,
see Fig. 10, which peaks at 30 MPa at r=±6 mm and is
under 10 MPa after r=±11 mm, explains only part of the
difference. Most of the difference is in the surface stress
measurements, especially an apparent negative bias in the
X-ray results for negative radii.

The small magnitude axial stresses, compared in
Fig. 12(b), are a good test of superposition because
measuring low stress levels accentuates errors. The hole
drilling reconstructed stresses agree with the neutron
results within uncertainty bars about 85% of the time.
The X-ray reconstructed stresses agree with neutron about
74% of the time, still within expectations for one standard
deviation uncertainties, but seem to again have a notice-
able negative bias for negative radii. The neutron results
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Fig. 10 Radial stress superposition from equation (4), a X-ray and b
hole drilling on opposite halves
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Fig. 9 The contour method measurements of hoop stress (from Fig. 8)
along the disk mid-thickness (z=0 Fig. 4) compared with neutron
diffraction results from an identical disk
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also seem to have a slight negative bias, indicating a
possible offset in the measured a0 values. The axial
stresses show a subtle “M” shape near the center of the
disk with a compressive peak at r=0. This feature is seen
in preliminary FE simulations where the predicted axial
stress is about −70 MPa at r=0 and +30 MPa at r=±4 mm.
The axial stress is expected to be within 10 MPa of zero
for |r|>10 mm, which is best matched by the hole drilling
reconstructed stresses.

Discussion

The experimental implementation of the superposition
theory was validated by the independent neutron diffraction
measurements. The agreement is impressive considering the

vastly different assumptions and biases inherent to the four
measurement methods included in the results: the contour
method, hole drilling, X-ray diffraction, and neutron
diffraction.

Because σB stresses were measured on the cut surface,
the validation involved probably the most challenging
implementation of the theory, so better results can be
expected when post sectioning stresses are measured sub-
surface. As seen in Fig. 2, the change stresses, σC, are
largest on the cut surface and decay farther away in accord
with St. Venant’s principle. Since the change stress is
largest on the cut surface, the correction to subsequently
measured stresses is at its largest and the sum is then more
subject to errors. Furthermore, surface stresses can be
especially challenging to measure accurately because of the
effects of surface preparation and irregularities, surface
corrosion, etc.
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Fig. 12 Reconstructed stresses from Figs. 10 and 11 compared with
neutron, (a) radial and (b) axial
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The surface-superposition contour method demonstrated
in this paper extends the traditional contour method to the
measurement of multiple stress components. Other techni-
ques to measure multiple components with the contour
method have different abilities and limitations. The “mul-
tiaxial” contour method gives all the stress components by
making additional cuts at 45° from the first cut, requiring an
extruded cross section, and limiting the application to a
continually processed part [52, 53]. The multiple cuts
method makes multiple orthogonal cuts and reconstructs
the original residual stresses using multiple superpositions
[29]. Therefore, it gives the multiple stress components on
different planes. The surface superposition contour method
presented in this paper gives multiple stress components on
a single plane using a single cut. However, it requires a
surface stress measurement technique in addition to the
contour method.

Under a certain condition, the surface-superposition
contour method special case of the theory may be sensitive
to plasticity errors. Solving equation (2) for the remaining
surface stresses gives:

sB
y ð0; y; zÞ ¼ sA

y ð0; y; zÞ � sC
y ð0; y; zÞ

sB
z ð0; y; zÞ ¼ sA

z ð0; y; zÞ � sC
z ð0; y; zÞ : ð6Þ

Examination of Fig. 8 illustrates that the change stresses,
σC, tend to be the same sign in all three directions, and, by
equation (2), sC

x ð0; y; zÞ ¼ sA
x ð0; y; zÞ. Therefore, if either of

the original in-plane stresses sA
y ð0; y; zÞ or sA

z ð0; y; zÞ were
of opposite sign to sA

x ð0; y; zÞ, the remaining surface
stresses would increase in magnitude according to equation
(6). At high enough magnitude, these stresses could exceed
the yield strength and potentially invalidate the assumption
of elastic superposition. However, this yielding issue is
expected to occur infrequently because residual stresses
where the stress components have opposite signs are
relatively uncommon. Also, the change stress magnitude
decays rapidly away from the surface, so this should have
less effect on subsurface measurement superposition. This
localized surface plasticity in the transverse direction also
does not have a large effect on the measured surface
contour. Therefore, the traditional contour method has
shown itself to be fairly insensitive to plasticity errors, as
shown by the agreement with neutron diffraction results in
welds where the stresses tend to be high [11, 35, 54–57].

Applying the superposition approach to axial stresses in
a girth weld, the example mentioned in the Introduction,
would work best with an additional step, as illustrated in
Fig. 13. Because the hoop residual stresses across the ring
thickness can have a net bending moment, one should first
split the ring by cutting through the thickness [Michael R.
Hill, U.C. Davis, personal communication]. Measuring the
amount the ring opens or closes then allows a simple

analytic or FE calculation of the moment stresses that have
been relieved [26]. Another cut, which has negligible effect,
is used to remove something like a 120° section of the
cylinder to provide access for the final cut. That final cut,
halving the remaining 240° section of the cylinder, is used
to measure the hoop stresses with the contour method. Now
the cross section is exposed for measurement of surface
axial and radial stresses. The two-step procedure has
already been validated for measuring the hoop stresses but
not the axial [58].

Conclusions

1. A theory was presented for using superposition to
determine internal residual stresses by sectioning with
the contour method and then measuring remaining
stresses with other methods. This theory can allow
measurements in parts where the internal stresses were
previously difficult to access. This approach opens up
possibilities to combine the advantages of different
techniques to obtain unprecedented measurements and
understanding.

2. A special case of the theory was presented, the surface
superposition contour method, for measuring triaxial
stress states on the plane of the cut. It was implemented
on a test specimen using X-ray diffraction and hole
drilling for surface stress measurement and then

opening

wire EDM
cut

Fig. 13 Proposed multi-cut process for measuring cylinders. The
amount of opening, measured after the first cut, is used to determine
the released bending moment prior to the final EDM cut used for the
contour method
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experimentally validated by comparing with neutron
diffraction measurements.

3. The surface superposition contour method may be more
difficult to implement accurately than subsurface
measurements. Care must be taken that the layer
affected by the cutting process is removed prior to
surface stress measurement. Furthermore, under certain
described conditions, surface stresses are more likely to
be affected by local plasticity.
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