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Abstract

A powerful new method for residual
stress measurement is presented. A part is cut
in two, and the contour, or profile, of the
resulting new surface is measured to
determine the displacements caused by
release of the residual stresses. Analytically,
for example using a finite element model, the
opposite of the measured contour is applied to
the surface as a displacement boundary
condition. By Bueckner’s superposition
principle, this calculation gives the original
residual stresses normal to the plane of the
cut. This “contour method” is more powerful
than other relaxation methods because it can
determine an arbitrary cross-sectional area
map of residual stress, yet more simple
because the stresses can be determined
directly from the data without a tedious
inversion technique. The new method is
verified with a numerical simulation, then
experimentally validated on a steel beam with
a known residual stress profile.

Introduction

With relaxation methods, residual
stresses are determined from deformations
measured after material removal. Analytical
complexity generally limits such techniques
to determination of one-dimensional (1-D)
stress variations. For example, in the hole
drilling [1] and crack compliance [2]
methods, strains measured at incremental hole
or slot depths, z, may be expressed as

( ) ( ) ( )∫=
z

dZZZzAz
0

, σε , (1)

where A is a function of geometry and
material properties that is determined using
complex analytical solutions or an extensive
series of finite element (FE) calibrations. The
techniques used to invert this equation for the
residual stress as a function of depth, σ(z), are
complex and time-consuming. Furthermore,
at least for hole drilling, the inversion
becomes unstable at relatively shallow depths
because measured surface strains are
insufficient to uniquely determine internal
stresses.

Complex 2-D or 3-D spatial variations
of residual stress are even more difficult to
measure with current relaxation methods. One
needs to cut a specimen into many pieces and
take many deformation measurements. Even
with all of that experimental effort, the
analysis to solve the inverse problem for the
original residual stresses is often prohibitively
complex.

Fundamentally, the analytical
complexity and need for an inverse solution
occurs because current methods use
deformations measured remote from the
location of stress relief, i.e., on a pre-existing
free surface. A mathematical representation of
the geometrical separation between the
location of stress relief and the location of
deformation measurement is given by the
function A in Eq. (1).

The new relaxation technique
presented in this work can determine 2-D
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variations in residual stress directly from the
measured deformations. The direct solution is
possible because deformation is measured on
the surface created by a cut, the location of
stress relief, rather than on a pre-existing free
surface. Hence, the analysis to solve for the
stresses from the measurements is
exceedingly simple.

The only common methods that can
measure similar 2-D stress maps have
significant limitations [3]. The neutron
diffraction method is nondestructive but
sensitive to microstructural changes [4], time
consuming, and limited in maximum
specimen size, about 50 mm, and minimum
spatial resolution, about 1 mm. Sectioning
methods [5,6] are experimentally
cumbersome, analytically complex, error
prone, and have limited spatial resolution,
about 1 cm.

The new relaxation technique for
measuring residual stress described in this
work is referred to as the “contour method.”
This paper first describes the theory behind
the contour method. Next, this new method is
verified using an FE simulation and then
experimentally validated on a bent beam
specimen. Finally, practical considerations
and future applications are discussed.

Theory

The contour method for measuring
residual stresses is based on a variation of
Bueckner’s superposition principle [7]. Figure
1 presents an illustration in 2-D for simplicity,
although the principle applies equally in 3-D.
In A, one starts with the undisturbed part
containing the residual stresses to be
determined. In B, the part has been cut in two
and has deformed because of the residual
stresses released by the cut. In C, the free
surface created by the cut is forced back to its
original shape. Superimposing the stress state
in B with the change in stress from C gives
the original residual stresses throughout the
part. This superposition principle assumes

that the material behaves elastically during
the relaxation of residual stress and that the
material removal process does not introduce
stresses of sufficient magnitude to affect the
measured displacements.

Proper application of this
superposition principle allows one to
experimentally determine the residual stresses
along the plane of the cut. Experimentally, the
contour of the free surface is measured after
the cut. Analytically, the surface of a stress-
free model is forced back to its original
configuration as in step C. Because the
stresses in B are unknown, one cannot obtain
the original stresses throughout the body.
However, the stresses normal to the free
surfaces in B must be zero. Therefore, step C
by itself will give the correct stresses along
the plane of the cut.

The described superposition principle
uniquely determines the original σx and τxy

(and τxz in the 3-D case) residual stress
distribution on the plane of the cut. The
analytical solution, step C, specifies
conditions on all boundaries of the body:
displacements are specified on the cut plane,
and the remaining boundaries are stress free.
Also, the body forces are zero throughout the
body. Therefore, by Kirchoff’s boundary
value theorem [8], the solution for the stress
state in the elastic body is unique. Conversely,
because Bueckner’s superposition principle
tells us that the solution is correct, only one
original distribution of σx, τxy, and τxz on the
cut plane can produce a given set of
displacements on the boundaries. Bueckner’s
superposition principle also tells us that the
other residual stresses in the body away from
the cut plane and the transverse stresses, σy,
σz, and τyz, on the cut plane will not change
the deformations in the cut part, i.e., our
measured contour in step B of Fig. 1.
Therefore, these stresses will not cause errors
in the contour method measurements, but the
contour method will not uniquely determine
these stresses. However, the analytical
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solution (step C Fig. 1) does uniquely and
correctly determine the change in all the
stresses throughout the part.

In practice, there is an arbitrary
displacement in the contour measurement,
i.e., the zero is arbitrary. There is also one
arbitrary rotation in 2-D and two in 3-D.
However, the apparently arbitrary motions
can in fact be uniquely determined by the
need for the residual stress distribution to
satisfy force and moment equilibrium.
Furthermore, an FE model used to solve for
the stresses accounts for the arbitrary motions
automatically, as will be demonstrated later.

Assumptions and Approximations.
The assumptions, mentioned above, that the
relaxation of residual stresses occurs
elastically and the cutting does not induce
stresses are common to relaxation methods
[3] and have been studied extensively [e.g.,
9,10]. However, the contour method requires
one unfamiliar assumption: that the cut occurs
along a plane that was flat in the original
configuration. Because the body will deform
slightly as stresses are released during cutting,
the validity of this assumption is not certain
even if the cut is perfectly straight relative to
a laboratory reference frame. In other words,
the original plane of the cut may move during
the cutting, and the cut may proceed on a
different path. However, both the validation
experiment and an FE simulation, which are
discussed later, show that the flat cut
assumption is reasonable if the specimen is
constrained adequately during cutting. In fact,
a symmetry argument shows that the plane
will not move for a zero-width cut made in
the center of a symmetrical clamping
arrangement. For such a symmetric case, the
only deviation from the flat cut assumption is
caused by the finite width of the actual cut.

One approximation to the theory is
made purely for convenience in the analysis:
the deformed shape of the body is not
modeled before analytically performing step
C. The starting point for this step can be a flat

surface because the deformations are quite
small for engineering materials, and the
analysis is linear. The results will be the
same, and the analysis is simpler.

An important approximation limits the
contour method to measurement of the normal
stresses only and not the shear stresses.
Measurement of the surface contour only
provides information about the displacements
in the normal (x) direction, not those in the
transverse (y) direction. Therefore, the
analytical approximation of step C will force
the surface back to its original configuration
in the x-direction only, leaving the y-
displacements unconstrained. If the residual
shear stresses were originally zero along the
plane of the cut (τxy in Fig. 1, τxz also for the
3-D case), the approximation is exact: Poisson
contractions will return the surface to its
original y-position, and the calculated stresses
will be correct.

In the general case when shear stresses
are present on the cut plane, one need only
average the contour measured on the two
halves of the part to correctly determine the
normal stress, σx. To explain this
theoretically, recall that the deformations
caused by the release of residual stresses can
be evaluated by considering an equivalent
surface traction on the cut plane. For a cut
surface with the normal in the x-direction only
the equivalent surface traction per unit width,
T, is given by

xxyyxxx nTnT τσ −=−= , , (2)

where n is the unit surface normal vector, and
ny = 0 in this case. Figure 2 illustrates that the
normal traction Tx is symmetric with respect
to the cut plane, and the transverse traction Ty

is anti-symmetric. Therefore, because the
problem is elastic and superposition holds, the
average of the contours on the two surfaces
will give the contour shape as if only the
normal stresses were present.

A numerical simulation in the next
section of this paper will demonstrate that the
above approximations are reasonable and will
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demonstrate that averaging correctly handles
shear stresses.

Previous Research: Although no
previous mention of the method proposed in
this paper was found in the literature, a few
researchers have applied a similar
superposition principle for residual stress
measurement. However, rather than
measuring the contour of the cut surface, they
only measured displacements on pre-existing
free surfaces, which are insufficient to
produce a 2-D stress map. Williams and
Stouffer [11] sawed a fatigue-cracked plate in
half along the crack line, measured the
displacement of a scribed line near the cut,
and calculated both residual stresses and
crack-closure stresses. Johnson et al. [12] and
Joerms [13] made a partial radial cut into a
railroad wheel and measured the relative
displacements of points on either side of the
slot. The displacements on the interior of the
cut surface were merely inferred from the
outer surface measurements and then used to
solve for the stresses in a 3-D FE model. Lin
and Huang’s 3-D FE simulation [14] showed
that large errors resulted from such
simplifications. Dickson et al. [15] measured
slot opening on a partial cut in a weld and
calculated a 1-D stress profile using a 2-D FE
model.

Numerical Verification

FE simulations were used to
demonstrate the validity of the
approximations required to implement the
contour method. Figure 3 shows one of the
simulations. A 2 × 1 beam was modeled using
the ABAQUS commercial FE code [16] and a
40 × 20 mesh of 8-noded, quadratic shape
function, plane stress elements (CPS8). The
material behavior was isotropic and linear
elastic with Poisson’s ratio of 0.3. For
residual stress normalized to give a peak
value of unity, the elastic modulus was taken
as 1000 to give σmax/E = 1000, which is a
typical magnitude for structural metals.

Residual stresses were initialized using a user
subroutine, and then one FE analysis step was
performed to ensure initial equilibrium. To
simulate cutting the part in two, a second
analysis step removed the elements on the
either half of the beam.

The first simulation considered a beam
having no shear stresses along the plane of the
cut. The axial residual stresses in the central
50% of the length of the beam were given by
a simple parabolic distribution that satisfied
equilibrium:

( ) 166 2 +−= yyyxσ , (3)

where the beam thickness goes from y = 0 to
1. The stresses in the outer 25% of the beam
length on both ends differed from Eq. (3) in
order to satisfy equilibrium and the free
boundary conditions. Figure 3 shows the left
half of the beam after the cut, with the
deformations exaggerated by a factor of 400.

Figure 4 shows that applying the
contour method to the beam simulation gave
the correct results. To apply the superposition
principle, a model of the undeformed and
unstressed half of the beam was taken from
the full mesh. The displacements of the cut
surface from Fig. 3 were applied with
opposite sign as displacement boundary
conditions to the nodes along the cut surface.
Applying only the x-displacements, as would
be the case with experimental implementation
of the contour method, gave the correct
stresses along the cut plane. Applying both x-
and y-displacements gave identical results
because the Poisson contraction automatically
resulted in the correct transverse
displacements; consequently the y-
displacements gave zero constraint forces.

This first simulation confirmed one of
the approximations to be used for practical
implementation of the contour method. The
stress calculation part of the simulation (i.e.,
step C in Fig. 1) started with an undeformed
body, rather than with the body deformed in
the shape of the measured contour. As
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predicted in the Theory section, the correct
results were still obtained because the
displacements were small.

The second simulation considered a
beam with both shear and normal stresses
along the plane of the cut. The normal stresses
along the plane of the cut were still given by
Eq. (3) but were varied in the x-direction to
give ( ) xx xyx σσ −=∂∂ ,  along the plane of

the cut. Combined with the 2-D local
equilibrium condition,

,0=
∂

∂
+

∂
∂

yx
xyx

τσ (4)

and free surface conditions, this ( ) xyxx ∂∂ ,σ
results in a shear stress distribution on the cut
plane of

( ) ( )yyyyxy +−= 23 32τ , (5)

which is shown in Fig. 5 as a “known” stress.
Figure 5 shows that the contour

method gives the correct results when shear
stresses are present on the cut plane even
though only the normal component (x) of the
surface contour can be measured
experimentally. The results averaged between
the two halves of the beam match the known
stresses. The individual results from either
from the two halves gave a root-mean-square
error in the σx distribution of 0.059, or 5.9%
of the peak value. Even though the simulation
considered a pessimistic case1, the errors are
reasonably small. These errors are only
relevant if one does not measure both halves
of the specimen. For completeness, we note
that applying both the x- and y-displacements

                                                  

1 The shear stress magnitudes should not be
compared directly to the normal stresses. Because of
the free surface condition (τxy =0 for y = 0,1) and
equilibrium condition [Eq. (4)], the magnitude of

( ) xyxx ∂∂ ,σ  determines the maximum value of shear
stress. The simulation of ( ) xx xyx σσ −=∂∂ , for a
specimen with unity thickness represents a decay of σx

from peak magnitudes to zero in one thickness, which
is a fairly steep gradient for a part with no
discontinuities in cross section.

to the surface on either half of the beam gave
the correct results for both normal and shear
stresses.

Experimental Validation

Known Residual Stress Specimen. A
plastically bent beam was carefully prepared
in order to provide a specimen with a known
residual stress profile. 43 mm square forged
stock of 21Cr-6Ni-9Mn austenitic stainless
steel was annealed at 1080°C for one hour
and argon quenched. Next, the beam was
machined to final shape with a 30 mm ×
10 mm minimum cross section. Then the
beam was thoroughly stress relieved by
heating in a vacuum to 1080°C for 15 minutes
and slow cooling at 100°C per hour. The
bending was performed in a four-point bend
fixture specially designed to ensure pure
moment between the inner rollers [17]. The
beam was plastically bent to a maximum
outer fiber strain of about 0.57 % and then
unloaded. Strain and load measurements
during bending were used to calculate
independent stress-strain curves for loading
and unloading in both tension and
compression [17]. Finally, superposition of
these curves gave the residual stress profile.
This method of predicting residual stress
profiles has been verified using a variety of
experimental techniques [18]. The elastic
modulus determined during these tests was
194 GPa, which compares well with the 197
GPa value reported by the manufacturer for
annealed material [19].

The analysis based on loads and
strains measured during bending provides
only a 1-D profile of residual stresses in the
beam. A prediction of the full stress map was
obtained by implementing the stress-strain
curves measured during the bending test into
a 3-D FE model.

Experiment. For the contour method,
the ideal machining process for separating the
part would make a precisely straight cut,
would not remove any further material from
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already cut surfaces, and would not cause any
plastic deformation. Wire electric discharge
machining (wire EDM) [20] is probably the
choice closest to the ideal. In wire EDM, a
wire is electrically charged with respect to the
workpiece, and spark erosion causes material
removal. The cutting is noncontact, whereas
conventional machining causes localized
plastic deformation from the large contact
forces. The part is submerged in temperature-
controlled deionized water during cutting,
which minimizes thermal deformations. The
wire-control mechanisms can achieve
positional precision of a fraction of a
micrometer, especially for a straight cut.
When the conditions are held constant during
the cutting, wire EDM cuts with a constant
overcut, which is also necessary to make a
straight cut. “Overcut” means that the final
slot is wider than the wire making the slot.

For this test, the beam was cut with a
Mitsubishi SX-10 wire EDM machine and a
100 µm diameter zinc-coated brass wire.
“Skim cut” settings, which are normally used
for better precision and a finer surface finish,
were used because they also minimize any
recast layer and cutting-induced stresses
[20,21]. Including the overcut, the slot was
about 140 µm wide.

 As discussed in the Assumptions and
Approximations subsection of the Theory
section, the original plane of the cut must be
constrained from moving as stresses are
relaxed during the cutting. Such constraint
requires an unconventional clamping
arrangement because usually only one side of
the workpiece is clamped for wire EDM.
Figure 6 shows how the beam was clamped
on both sides for this test. Before clamping,
the beam and all the clamps were allowed to
come to thermal equilibrium in the water tank
to assure that no thermal stresses would arise
during the cutting.

After cutting, the beam was removed
from the clamps, and the contour of the cut
surface was measured using a common
inspection tool. A coordinate measuring
machine (CMM) registers mechanical contact
with a touch trigger probe. An optoelectric
system using glass scales gives the probe
location, which is combined with machine
coordinates to locate the surface. Because the
CMM uses a probe tip with a finite radius,
surface roughness is at least partially filtered
out from the measured contour.

For this test, the measurements were
taken using a Brown & Sharpe XCEL 765
CMM, which resides in a temperature and
humidity controlled inspection laboratory. A
4 mm diameter ruby tip was selected after
trial measurements using tips with diameters
from 1 mm to 8 mm revealed no significant
measurement differences. The machine
resolution is 0.1 µm, and the manufacturer
reports measurement accuracy of 3.5 µm over
the full 500 mm measurement range.
However, precision is more relevant than
accuracy for this application because the of
the small measurement range and the need for
only relative, rather than absolute,
measurements. The experimental scatter in
the contour measurements on the beam
indicates a precision of about ±0.5 µm for
measurement on the surface cut by wire
EDM.

Figure 7 shows the contours measured
separately on the cut surfaces from both
halves of the beam. The zeros are arbitrary, so
the x-direction offset between the two curves
is irrelevant. The measurements were taken in
the center (z-direction) of the surface, y = 0
represents the beginning of the cut, and
measurements were taken approximately
every 130 µm. For both surfaces, positive x is
taken in the outward normal direction;
therefore, values that are more positive
represent higher regions of the surface. Near
the ends of the data range, there is additional
noise in the data. The noise may be caused by
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machining irregularities on the edge or by the
CMM’s spherical tip going slightly past the
actual edge of the part. Therefore, it is
uncertain if the data at the edges correctly
represents the part shape, and the calculated
stress results will not be plotted all the way to
the ends.

Measurements were also taken over
the full cut surfaces using the CMM and a 50
by 300 grid. Figure 8 shows the measured
surface shape. The measured contours were fit
to a bivariate Fourier series to smooth out
noise in the data, and Fig. 8 plots the fit rather
than the raw data because the 15,000 data
points are difficult to clearly plot. The noise
level in the data and the quality of the fit are
very similar to the 1-D measurements shown
in Fig. 7.

Calculations and Results. Initial
calculations were performed on a 2-D model
using the measurements shown in Fig. 7. The
half-beam was modeled using 5180 8-noded,
quadratic shape function, plane stress
elements (CPS8), with the mesh refined near
the cut surface using multi-point constraints.
A convergence study indicated that this mesh
density is well beyond the refinement needed
for a converged answer. The material
behavior was isotropic linearly elastic with an
elastic modulus of 194 GPa and Poisson’s
ratio of 0.28. As was discussed in the Theory
section and verified by the numerical
simulation, it was sufficient to model the cut
surface as initially flat rather than deformed in
the shape of the measured contour. After the
data was smoothed using local spline
approximations, shown in Fig. 7, the opposite
of the measured contour was applied as
displacement boundary conditions to the
nodes on the surface representing the cut.

Figure 9 shows the exaggerated
deformed shape of the FE model. Only one
constraint additional to the imposed contour
was necessary to prevent rigid-body motions.
As discussed previously in the Theory
section, the FE solution easily handled the

arbitrary displacement and rotation in the
measured contour. The movement of the free
end of the beam illustrates the rotation
necessary to satisfy moment equilibrium and
the slight contraction to satisfy force
equilibrium.

Figure 10 shows the 1-D residual
stress profiles measured by the contour
method compared with the prediction from
the bend test. The stresses were obtained by
post-processing the FE results to obtain σx at
the nodes along the surface representing the
cut. The agreement with the prediction is very
good, especially considering the low
magnitude of residual stresses. Such low
residual stresses in a stiff material like steel
result in a decreased magnitude of the contour
and, therefore, increased errors. The
discussion in the Theory section indicates that
the difference between sides one and two may
be due to the presence of shear stresses.
However, the four-point bent beam should
have no shear stresses, and such asymmetry
may also arise from the cut not being centered
between the clamps or other experimental
errors.

To illustrate the ability of the contour
method to measure a full 2-D cross-sectional
stress map, the contour measured on the entire
cut surface, Fig. 8, was applied to a 3-D FE
model. The half-beam was modeled in
ABAQUS using 16,200 20-noded brick
elements (C3D20). This mesh gave a 10 × 30
mesh of elements on the 10 mm × 30 mm cut
surface. The bivariate Fourier series fits to the
measured contour data were evaluated at a
grid corresponding to the FE nodes, averaged
between sides one and two, and then applied
as displacement boundary conditions in the
FE model. Figure 11 shows the deformed FE
model and the three additional displacement
constraints that prevented rigid body motions.
The rotations of the free end of the beam,
visible in Fig. 11, automatically account for
the arbitrary rotations in the measured
contour.



8

Figure 12 shows the measured 2-D
map of residual stresses compared to the bend
test prediction. Because of the
aforementioned uncertainty in the surface
contour measured near the edges of the
surface, the contour lines are not plotted all
the way to the edges. The agreement between
measurement, Fig. 12b, and prediction, Fig.
12a, is good but not excellent. The z-direction
curvature in the measured contour, see Fig. 8,
resulted in a shift in the calculated stresses
towards more compressive values along the
center of the surface (z = 5).

The agreement between measurement
and prediction would have been better if the
correct wire had been used during the EDM
cutting. The bent beam specimen had been cut
using a brass wire coated with zinc oxide,
whereas the manufacturer of the EDM
machine recommends a bare brass wire. A
test cut using the same coated wire was made
on a another specimen made of the same steel,
but this time the specimen had been stress
relieved. The top graph on Fig. 13 shows the
contour measured after that cut, which shows
a distinct curvature. Because the beam was
stress free, the curvature represents the shape
of the cut rather than a stress relief effect.
Another test cut was made using the same
conditions but with a bare brass wire. The
middle graph on Fig. 13 shows that the bare
brass wire made a cut that was flat to within
the measurement resolution.

Figure 12c shows the improved results
obtained by correcting for the curvature in the
actual cut. Similar or even better results
probably could have been obtained without
any correction if the bare brass wire had been
used for cutting the beam. The correction was
made by subtracting the curvature caused by
cutting conditions from the measured contour
and recalculating the stresses with the FE
model. Figure 13 shows the curvature
correction compared to both the test cut on
the stress free specimen (top graph) and to the
typical curvature measured on the bent beam

(bottom graph – from the raw data used to
generate Fig. 8). Note that the low region in
the top graph of Fig. 13 corresponds to a
region that showed visual evidence of
corrosion or some other surface damage after
EDM cutting, and there was no corresponding
region in the bent beam. Therefore, the
curvature correction does not follow the low
spot.

Discussion

This section discusses several of the
more apparent practical issues of the contour
method. First we briefly mention that
analytical smoothing of any noise in the
measured contour is crucial because
calculating stress from the displacements
amplifies noise in the data.

The contour method is sufficiently
sensitive to measure residual stress maps of
interest. The beam specimen in this study
could be considered a sensitivity test because
the stresses were less than 150 MPa and
resulted in a contour with only about a 10 µm
peak-to-peak magnitude. Residual stresses are
often several times greater, the parts are also
often larger, and many materials of interest
have lower elastic moduli, any of which
would give larger contours. Some preliminary
measurements on a 38-mm thick butt-welded
steel plate gave a contour of about 120 µm
peak-to-peak magnitude. However, larger
residual stresses could possibly lead to
yielding as the stresses are released during
cutting. Although the possibly of yielding
should be studied in future research, recent
experimental studies have shown that,
because of strain hardening effects, reverse
yielding does not necessarily occur in
relaxation measurements even when the
residual stresses exceed the nominal yield
strength of a material [10].

As presented, the contour method
measures only the stress component normal to
the cut surface, which is fine for many
measurement applications because the normal
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stress is often the largest and the main
contributor to failure. A 2-D map of one stress
component is also generally more than
sufficient for validating predictive models,
which is a very important use for residual
stress measurements.

Nevertheless, it may be possible to
extend the contour method to measurements
of additional stress components. The same
calculation that determines the normal
stresses from the measured surface contour,
Fig. 2, also determines the change in the
transverse normal stresses. Hence, adding the
remaining transverse stress on the face of the
cut, measured for example using x-ray
diffraction, would give the original stresses.
Other possibilities for measuring multiple
stress components include reconstructing 3-D
stresses from 2-D measurements on multiple
slices [e.g., 22] or using a curved cut such as a
hole [23].

Errors can be greatly reduced by
correctly clamping the specimen during the
cutting. The cut is assumed to occur along a
flat plane in the original configuration.
However, stress relief can cause this plane to
move slightly as the cut progresses. This
effect explains why the contour method
results in Figs. 10 and 12 slightly
underestimate the stress peaks. Further
explanation of this effect and how to calculate
and correct for it with an FE calculation is
postponed to a future publication. For now,
we report that when the specimen is clamped
on both sides of the cut, the resulting error in
the stress distribution is less than 10%, and
more sophisticated clamping arrangements
could probably reduce the errors further.

The z-direction curvature in the
measured surface contour, see Figs. 8 and 13,
was likely caused by a common source of
inaccuracy in wire EDM machining called
“barreling,” where more material is removed
near the edges of the cut than in the center
[20]. Curvature can also be caused by a
tensile recast layer, but that would cause

curvature in the other direction. Either effect
can be minimized by optimizing cutting
parameters, such as by cutting more slowly,
using high pulse frequencies, and copious
cooling the area of the cut by proper flushing
[21,24]. The middle graph in Fig. 13
demonstrates that a very flat surface can be
cut if care is taken. Note that curvature, if it
was present from the cut, would primarily
affect the stresses determined near the edges
of the surface because that is where such
curvature is the greatest.

Conclusions

The contour method for measuring
residual stress was experimentally validated
using a bent beam specimen. In many ways,
the contour method has the potential to
surpass other measurement methods in both
its ability to measure stresses and its ease of
use:

1. The contour method can measure a
full 2-D cross-sectional map of the
residual stress component normal to the
cross section.
2. The residual stress map can be
obtained directly from the measured
contour; no inverse procedure or
assumptions about the stress variations
are necessary.
3. The technique is relatively simple
experimentally. No strain gages or other
instrumentation are required during the
testing. The necessary equipment is
widely available in machine shops and
inspection laboratories.

 The contour method also has the
potential to measure residual stress maps that
are extremely difficult to measure with other
techniques, if possible at all. One particularly
promising application is welding residual
stresses. Microstructural changes in the weld
material make neutron diffraction
measurements difficult [e.g., 4] but have
relatively small effects on the macroscopic
elastic properties that would affect contour
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method measurements. Another exciting class
of applications is parts with geometrically
complex cross sections, like railroad rails,
forgings, I-beams, extrusions, and castings.

Several practical points should be
considered for anyone wishing to apply the
contour method. Wire EDM may be the only
current method for making the cut that
satisfies the assumptions of the contour
method. The part should be securely clamped
on both sides of the cut (e.g., Fig 6) during
cutting. The surface contour should be
measured on both halves of the part after
cutting, and the results from the two sides
should be averaged to minimize errors.
Finally, a test cut should be made in a stress-
free region of the part and the resulting
surface contour measured to quantify or
correct for errors in the assumption of a flat
cut.
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Figure Captions

1. Superposition principle to calculate residual stresses from surface contour measured

after cutting a part in two.

2. Surface tractions equivalent to releasing residual stress on cut surface. Normal

traction Tx is symmetric about cut plane, transverse Ty is anti-symmetric. Illustrated

for σx negative and τxy positive.

3. Finite element simulation, deformed shape of beam after separating along midplane.

4. Simulated contour method results for residual stress profile of beam with no shear

stresses on cut plane.

5. Simulated contour method results from beam with shear stresses along cut plane

when only the normal component (x) of surface contour is measured.

6. Clamping arrangement during wire EDM cutting of beam.

7. 1-D surface contour measured on both halves of the cut beam. Zero is arbitrary, so the

shift between the two profiles is irrelevant.

8. 2-D surface contour measured on side two of beam, fitted to bivariate Fourier series.

9. 2-D finite element model of beam after measured contour has been applied as

displacement boundary condition. For clarity, only a few elements are shown.

10. 1-D residual stress results from contour method measurements on bent beam.

11. 3-D finite element model after measured contour has been applied as displacement

boundary condition.

12. Cross-sectional residual stress map from contour method test on bent beam, stresses

are in MPa.

13. Measured surface curvature effects depending on cutting conditions. See Fig. 6 for

cutting direction.
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