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Abstract

The Contour Method is a technique for measuring macroscopic residual stresses in

engineering materials. In details, a body is carefully cut in two using wire electric

discharge machining (EDM). The contours of the cut surfaces are then measured

and used to calculate the original residual stress normal to the cut plane using a

simple finite element calculation. In this study, two new theoretical developments of

the contour method are presented which allows the measurement of multiple stress

components respectively by applying different techniques and by making multiple

cuts.

In order to to validate these new developments, a residual stress test specimen

was designed, fabricated and then tested with different experimental techniques. A

60 mm diameter 10 mm thick disk was plastically compressed through the thickness

with a 15 mm diameter indenter in the center of the disk to provide a unique

biaxial stress state that is ideal for testing the theories. Two different materials were

used for the specimens: a 316L stainless steel and an aluminium 2024-T351. The

stresses in the 316L stainless steel specimen were first mapped using time-of-flight

neutron diffraction. Next, the hoop stresses in both material disks were mapped on

a cross-section using the classical contour method and furthermore measured with

the slitting method, and the agreement with the neutron diffraction measurements

and the FE prediction was excellent.

In order to validate the multiple techniques theory, an initial attempt to measure

the in-plane stresses disk using x-ray diffraction was unsuccessful because of the large

grain size of the 316L stainless steel. Then, several experimental tests on the 316L

stainless steel and aluminium 2024-T351 indented disks were executed using the

ESPI hole-drilling method.

The multiple cuts theory was demonstrated first by means of 3D FE simulations

and then by an experimental test carried out on a quenched plate of HSLA-100

steel and on the 316L stainless steel disk. The surface superposition theory was

demonstrated by using the ESPI hole drilling tests carried out on the 316L stainless

steel and aluminium 2024-T351 indented disks.
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Chapter 1

Classical Contour Method

1.1 INTRODUCTION

Residual stresses play a significant role in many material failure processes like fa-

tigue, fracture, stress corrosion cracking, buckling and distortion. Residual stresses

are the stresses present in a part free from any external load, and they are generated

by virtually any manufacturing process. Because of their important contribution to

failure and their almost universal presence, the knowledge of residual stress is crucial

for prediction of the strength of any engineering structure. However, the prediction

of residual stresses is a very complex problem. In fact, the development of residual

stress generally involves nonlinear material behavior, phase transformation, coupled

mechanical and thermal problems and/or varying mechanical properties throughout

the material. Hence, the ability to accurately quantify residual stresses through

measurement is an important engineering tool.

Recently, a new method for measuring residual stress, the contour method [1,

2,3,4], has been introduced. In the contour method, a part is carefully cut in two

along a flat plane causing the residual stress normal to the cut plane to relax. The

contour of each of the opposing surfaces created by the cut is then measured. The

deviation of the surface contours from planarity is assumed to be caused by elastic

relaxation of residual stresses and is therefore used to calculate the original residual

stresses. One of the unique strengths of this method is that it provides a full cross-

sectional (two-dimensional) map of the residual stress component normal to the

cross section. The only common methods that can measure similar 2-D stress maps

have significant limitations [5]. The neutron diffraction method is nondestructive

but sensitive to micro-structural changes [6], time consuming, and limited in max-

imum specimen size, about 50 mm, and minimum spatial resolution, about 1 mm.

Sectioning methods [5] are experimentally cumbersome, analytically complex, error

prone, and have limited spatial resolution, about 1 cm. Other relaxation methods,
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1. Classical Contour Method

at least those that are commonly used, determine at most a one-dimensional depth

profile [7], although some can measure multiple stress components [8]. A limitation

of the contour method is that only one residual stress component is determined from

the measurement.

In order to extend the capability of contour method to measure multiple residual

stress components, two new theoretical developments are presented in this thesis to

obtain the other stress components. The first proposed method involves making

multiple cuts and the original residual stresses, prior to the first cut, are recon-

structed on all cut planes. Experimental test to validate the theory are presented.

Multiple cuts have been used previously to measure multiple stress components with

the contour method [9], but instead of reconstructing the original stresses the results

were compared to finite element simulations of the manufacturing process where the

effect of the multiple cuts were also simulated. Another approach for measuring

multiple components with the contour method involves making additional cuts at

45 degrees from the first cut, assuming a continually processed part, and calculating

the full original stress tensor on the first cut plane [10]. The method proposed in this

thesis provides a complementary option for determining multiple stress components.

The second proposed method involves the application of other residual stress

measurements techniques on the cut surface (i.e. after cutting) in order to measure

the remaining in-plane stresses relaxed by the execution of the cut. Then the original

residual stresses are reconstructed on the cut plane. Experimental tests were carried

out in order to validate the theory.

These improvements to the contour method that needs experimental validation

motivated to produce a novel test specimen. In literature there are many residual

stress measurement techniques. Each of them has its advantages and disadvantages,

and its own accuracy. As originally presented, the contour method only measured the

stress component normal to the cross-section of measurement. More recent exten-

sions to the contour method [10,11] determine multiple components using multiple

cuts. However, in theory one should be able to measure multiple components with

a single cut if subsequent measurements are taken on the cut surface with other

techniques. A test specimen with significant stresses in two directions that were

also significantly different from each other would provide the most convincing vali-

dation of the new theory. Since both the new theory and the independent validation

would require other measurement methods, the specimen would have to be possible

to measure with multiple techniques.

In order to test these new theories, in this thesis will be presented the design,

the fabrication, the FE model and the experimental validation of a test specimen.
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Most common residual stress test specimens are not ideal for the required validation

purposes. Various procedure for introducing residual stresses into a test specimen

have been used. The most common is a beam plastically bent producing a typical

zigzag residual stress distribution through the thickness. The shrink-fit ring and

plug that produced that exhibits a biaxial compression residual stress field on the

plug and a tension-compression state on the ring. Unfortunately this specimen can

not be used for contour method because the plug will full apart after the cut. Then,

recently the side-punching technique [12] was used to introduce residual stresses into

a specimen in order to study the influence of residual stress on fracture behavior of

materials. A specimen with stresses that could be easily predicted or modeled would

provide the additional benefit of not requiring extensive independent measurements.

In order to produce a bi-axial residual stress field with different sign in the test

specimen, a technique similar to the side-punching [12], that will easily allow to

predict by FE simulation the residual stress field, is presented.

In order to validate two theories for extending the contour method to multiple

stress components, this thesis presents the design, fabrication, the material charac-

terization and the FE prediction of the residual stresses of the specimen described

in the earlier paragraph. Furthermore, in order to measure the residual stress field

produced with this technique, a neutron diffraction experiment was executed on this

specimen. Then also the contour method was applied to two different test speci-

mens, that have virtually the same residual stress field, and it was also possible to

verify its good repeatability.

1.2 THEORY

The contour method for measuring residual stresses is based on a variation of Bueck-

ners superposition principle [13]. Figure 1.1 presents an illustration in 2-D for sim-

plicity, although the principle applies equally in 3-D. In A, one starts with the

undisturbed part containing the residual stresses to be determined. In B, the part

has been cut in two and has deformed because of the residual stresses released by

the cut. In C, the free surface created by the cut is forced back to its original shape.

Superimposing the stress state in B with the change in stress from C gives the origi-

nal residual stresses throughout the part. This superposition principle assumes that

the material behaves elastically during the relaxation of residual stress and that the

material removal process does not introduce stresses of sufficient magnitude to affect

the measured displacements.

Proper application of this superposition principle allows one to experimentally

determine the residual stresses along the plane of the cut. Experimentally, the
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Figure 1.1 – Superposition principle to calculate residual stresses from surface
contour measured after cutting the part in two.

contour of the free surface is measured after the cut. Analytically, the surface of a

stress-free model is forced back to its original configuration as in step C. Because

the stresses in B are unknown, one cannot obtain the original stresses throughout

the body. However, the stresses normal to the free surfaces in B must be zero.

Therefore, step C by itself will give the correct stresses along the plane of the cut.

The described superposition principle uniquely determines the original σx and

τxy (and τxz in the 3-D case) residual stress distribution on the plane of the cut. The

analytical solution, step C, specifies conditions on all boundaries of the body: dis-

placements are specified on the cut plane, and the remaining boundaries are stress

free. Also, the body forces are zero throughout the body. Therefore, by Kirchoffs

boundary value theorem [14], the solution for the stress state in the elastic body

is unique. Conversely, because Bueckners superposition principle tells us that the

solution is correct, only one original distribution of σx, τxy and τxz cut plane can

produce a given set of displacements on the boundaries. Bueckners superposition

principle also tells us that the other residual stresses in the body away from the cut

plane and the transverse stresses, σy, σz and τyz, on the cut plane will not change

the deformations in the cut part, i.e., our measured contour in step B of Fig. 2.1.

Therefore, these stresses will not cause errors in the contour method measurements,

but the contour method will not uniquely determine these stresses. However, the an-

alytical solution (step C Fig. 2.1) does uniquely and correctly determine the change

in all the stresses throughout the part.

In practice, there is an arbitrary displacement in the contour measurement, i.e.,

the zero is arbitrary. There is also one arbitrary rotation in 2-D and two in 3-D.

However, the apparently arbitrary motions can in fact be uniquely determined by

the need for the residual stress distribution to satisfy force and moment equilibrium.

Furthermore, an FE model used to solve for the stresses accounts for the arbitrary

motions automatically, as will be demonstrated later.
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1.2.1 Assumptions and approximations

The assumptions, mentioned above, that the relaxation of residual stresses occurs

elastically and the cutting does not induce stresses are common to relaxation meth-

ods [15] and have been studied extensively [16,17]. However, the contour method

requires one unfamiliar assumption: that the cut remove a constant width of mate-

rial where the width is measured in the original undeformed material configuration,

i.e. cutting method does not re-cut previously cut surfaces. Because the body will

deform slightly as stresses are released during cutting, the validity of this assumption

is not certain even if the cut is perfectly straight relative to a laboratory reference

frame. In other words, the original plane of the cut may move during the cutting,

and the cut may proceed on a different path. However, both the validation ex-

periment and an FE simulation, which are discussed later, show that the flat cut

assumption is reasonable if the specimen is constrained adequately during cutting.

In fact, a symmetry argument shows that the plane will not move for a zero-width

cut made in the center of a symmetrical clamping arrangement. For such a sym-

metric case, the only deviation from the flat cut assumption is caused by the finite

width of the actual cut.

One approximation to the theory is made purely for convenience in the analysis:

the deformed shape of the body is not modeled before analytically performing step

C. The starting point for this step can be a flat surface because the deformations

are quite small for engineering materials, and the analysis is linear. The results will

be the same, and the analysis is simpler.

An important approximation limits the contour method to measurement of the

normal stresses only and not the shear stresses. Measurement of the surface contour

only provides information about the displacements in the normal (x) direction, not

those in the transverse (y) direction. Therefore, the analytical approximation of

step C will force the surface back to its original configuration in the x-direction only

and the shear stress in the y-direction forced to zero on the cut plane. Elsewhere is

free boundary (σ = τ = 0). If the residual shear stresses were originally zero along

the plane of the cut (τxy in Fig. , τxz also for the 3-D case), the approximation is

exact: Poisson contractions will return the surface to its original y-position, and the

calculated stresses will be correct.

In the general case when shear stresses are present on the cut plane, one need only

average the contour measured on the two halves of the part to correctly determine the

normal stress, σx. To explain this theoretically, recall that the deformations caused

by the release of residual stresses can be evaluated by considering an equivalent

surface traction on the cut plane. The normal traction Tx is symmetric with respect
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to the cut plane, and the transverse traction Ty is antisymmetric. Therefore, because

the problem is elastic and superposition holds, the average of the contours on the

two surfaces will give the contour shape as if only the normal stresses were present.

Numerical simulations were executed in [1] to demonstrate that the above ap-

proximations are reasonable and that averaging correctly handles shear stresses.

1.3 EXPERIMENT

For the contour method, the ideal machining process for separating the part would

make a precisely straight cut, would not remove any further material from already

cut surfaces, and would not cause any plastic deformation. Wire electric discharge

machining (wire EDM [18]) is probably the choice closest to the ideal. In wire

EDM, a wire is electrically charged with respect to the workpiece, and spark erosion

causes material removal. The cutting is non-contact, whereas conventional machin-

ing causes localized plastic deformation from the large contact forces. The part is

submerged in temperature-controlled deionized water during cutting, which mini-

mizes thermal deformations. The wire-control mechanisms can achieve positional

precision of a fraction of a micrometer, especially for a straight cut. When the condi-

tions are held constant during the cutting, wire EDM cuts with a constant overcut,

which is also necessary to make a straight cut. Overcut means that the final slot is

wider than the wire making the slot.

Usually a 100 µm diameter wire is used for contour method. Skim cut settings

are used for better precision and a finer surface finish, and also to minimize any

recast layer and cutting-induced stresses [18,19]. Including the overcut, the slot is

about 150 µm wide.

As discussed in subsection 1.2.1, the original plane of the cut must be constrained

from moving as stresses are relaxed during the cutting. Such constraint requires an

unconventional clamping arrangement because usually only one side of the workpiece

is clamped for wire EDM. Before clamping, the beam and all the clamps were allowed

to come to thermal equilibrium in the water tank to assure that no thermal stresses

would arise during the cutting.

After cutting, the part is removed from the clamps, and the contour of the

cut surface are measured using a coordinate measuring machine (CMM) or a laser

surface contouring. The CMM registers mechanical contact with a touch trigger

probe. An optoelectric system using glass scales gives the probe location, which is

combined with machine coordinates to locate the surface. Because the CMM uses a

probe tip with a finite radius, surface roughness is at least partially filtered out from

the measured contour. The laser scanning is a non-contact technique that allows
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to acquire 3D objects as point clouds. It uses laser light to probe the environment.

The laser beam shines on a surface and exploit a camera to look for the location

of the laser dot. Depending on how far away the laser strikes a surface, the laser

dot appears at different places in the cameras field of view. This technique is called

triangulation because the laser dot, the camera and the laser emitter form a triangle.

The length of one side of the triangle, the distance between the camera and the laser

emitter is known. The angle of the laser emitter corner is also known. The angle

of the camera corner can be determined by looking at the location of the laser dot

in the cameras field of view. These three pieces of information fully determine the

shape and size of the triangle and gives the location of the laser dot corner of the

triangle. Usually the accuracy of laser scan is bigger than the CMM one.

The stresses that were originally present on the plane of the cut were calculated

numerically by elastically deforming the cut surface into the opposite shape of the

contour that was measured on the same surface. This was accomplished using a

three-dimensional elastic finite element (FE) model. The contours must be measured

on both halves of the part after cutting, and the results from the two sides should

be averaged to minimize errors.

The contour method for measuring residual stress was experimentally validated

several times. First using a bent beam specimen [1], then on a neutron diffraction

scanned weld beam [2]. It was applied to a friction stir weld beam [20,21], a railroad

rail [22] and to a LENSr component [23] and compared with neutron diffraction

results Then it was also applied to an aluminum hand forging plate [9], to a quenched

plate [24] and the same plate shot by a tungsten carbide sphere at high velocity [25].

In many ways, the contour method has the potential to surpass other measure-

ment methods in both its ability to measure stresses and its ease of use:

1. The contour method can measure a full 2-D cross-sectional map of the residual

stress component normal to the cross section.

2. The residual stress map can be obtained directly from the measured contour;

no inverse procedure or assumptions about the stress variations are necessary.

3. The technique is relatively simple experimentally. No strain gages or other

instrumentation are required during the testing. The necessary equipment is widely

available in machine shops and inspection laboratories.

The contour method also has the potential to measure residual stress maps that

are extremely difficult to measure with other techniques, if possible at all. One par-

ticularly promising application is welding residual stresses. Microstructural changes

in the weld material make neutron diffraction measurements difficult but have rel-

atively small effects on the macroscopic elastic properties that would affect contour
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method measurements. Another exciting class of applications is parts with geomet-

rically complex cross sections, like railroad rails, forging, I-beams, extrusions, and

castings.
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Chapter 2

Theory: Multiple Components

In this chapter two new theoretical developments that will allow the contour method

to measure multiple stress components making different cuts or using different mea-

surement techniques, are presented.

2.1 FIRST CUT: TRADITIONAL CONTOUR METHOD

Before introducing the new theory for multiple cuts, the original theory for the first

cut is reviewed. The contour method [1,2] is based on a variation of Bueckner’s

superposition principle [13]. Figure 2.1 presents an illustration in 2-D for simplicity,

although the principle applies equally in 3-D.

x(y) 

+ in tension 

-  in compression 

_

+
x

y

+

A =B +C 

Original residual  
stress distribution 

Part cut in half, 
stresses relieved 
on face of cut 

Force cut surface  
back to original state 

Figure 2.1 – Superposition principle to calculate residual stresses from surface
contour measured after cutting the part in two.

In A, the part is in the undisturbed state containing the residual stress to be

determined. In B, the part has been cut in two and has deformed because of the

residual stresses released by the cut. In C, the free surface created by the cut is

forced back to its original flat shape. Superimposing the stress state in B with the

change in stress from C would give the original residual stress throughout the part,

as shown by the following expression:

σ(A) = σ(B) + σ(C) (2.1)
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This superposition principle assumes elastic relaxation of the material and that

the cutting process does not introduce stress that could affect the measured contour.

With proper application of this principle it is possible to determine the residual

stress over the plane of the cut. Experimentally, the contour of the free surface is

measured after the cut and analytically the surface of a stress-free model is forced

back to its original flat configuration by applying the opposite of the measured

contour as displacements. Because the stresses in B are unknown, one cannot obtain

the original stress throughout the body. However, the normal and shear stresses on

the free surface in B must be zero (σx, τxy and τxz). Therefore, step C by itself will

give the correct stresses along the plane of the cut:

σ(A)
x = σ(C)

x

τ (A)
xy = τ (C)

xy at x = x cut surface (2.2)

τ (A)
xz = τ (C)

xz

The described superposition principle uniquely determines the original σx, τxy

and τxz residual stress distribution on the plane of the cut. In fact, the analyti-

cal solution (step C) specifies conditions on all boundaries of the body. In detail,

displacements are specified on the cut plane, and the other surfaces are stress free.

Therefore, by the Kirchoff’s boundary value problem [14], the solution for the stress

state in the elastic body is unique. Since the solution is unique and the application

of the contour as boundary conditions gives us the original distribution of the σx,

τxy and τxz on the cut plane, conversely the relaxed contour after the cut is only

caused by the relaxation of the original σx, τxy and τxz on the cut plane. Stresses

in the body away from the cut plane and the transverse stresses σy, σz and τY z on

the cut plane will not have any influence on the measured contour (step B). For this

reason, step C does not determine the original value of these stresses throughout

the body but only the change in all the stresses throughout the part.

In practice, only the normal stress component σx, can be experimentally deter-

mined. The experimental measurement of the contour only provides information

about the displacements in the normal (x) direction, not those in the transverse

(y) direction. Therefore, the surface is forced back to the original flat configuration

(step C) in the x-direction only. The shear stresses τxy and τxz are constrained to

zero in the solution. This stress-free constraint is automatically enforced in most

implicit, structural, finite-element analyses if the transverse displacements are left

unconstrained. Even if residual shear stresses were present on the cut plane, av-

10



2. Theory: Multiple Components

eraging the contours measured on the two halves of part still lead to the correct

determination of the normal stress σx [1].

A small convenience is taken in the data analysis by finite element modeling.

Modeling the deformed shape of the part for step C in Figure 2.1 would be tedious.

Instead, the surface is initially flat in the finite element model, and then the part is

deformed into the shape opposite of the measured contour. Because the deformations

are quite small, the same answer is obtained but with less effort.

2.2 SECOND CUTS

Once the original part has been cut in two and the original σx residual stress on

the cut plane is obtained, it is also possible to evaluate the other original σz (or

σy) residual stresses on a different plane by making additional cuts. The initial

analysis of data from the additional cut provides a map of stresses after the first

cut, which in the neighborhood of the first cut have changed from their original

values. Fortunately, the same calculation that provides σx from the first cut also

provides all the necessary information to reconstruct the original stresses on the

plane of the second cut (before the first cut — step A in Figure 2.2).

A
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Force cut surface  
back to original state (A) 

x(y)

_

+x
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+Original residual  
stress distribution 
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+E

Force cut surface back to original state (B)

Part cut in half, 
stresses relieved 
on face of cut  D 
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b

a

Figure 2.2 – Multiple Stress-Component Superposition Principle.

Figure 2.2 illustrates the theory for reconstructing the original residual stresses
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on the plane of the second cut. The steps A, B and C are as described above

for Figure 2.1. In D, the part has been cut another time in two along a plane

perpendicular to the first cut plane and normal to the z-direction.

It has deformed because of the residual stresses released by the cut. In E, the

free surface created by the second cut is forced back to the original shape before

the second cut (step B). Since the stress state in B is given by superimposing the

stress state in D with the change in stress from E (as described for the first cut), the

original residual stress throughout the part in A, is given by the sum of the stress

state in D, E and C, as shown by the following expression:

σ(A) = σ(B) + σ(C) = σ(D) + σ(E) + σ(C) (2.3)

Because the stresses in D are unknown, for the same reason described above, one

cannot obtain the original stress throughout the body. However, the normal and

shear stresses on the free surface in D must be zero (σz, τzx and τzy). Therefore, the

sum of step E, (equal to step B on the cut surface) and step C will give the correct

stresses along the plane of the second cut:

σ(A)
z = σ(E)

z + σ(C)
z

τ (A)
zx = τ (E)

zx + τ (C)
zx (2.4)

τ (A)
zy = τ (E)

zy + τ (C)
zy

Obviously, as described before, the solution is unique, but only the normal stress

component σz can be experimentally determined.

With this superposition principle, it possible to evaluate the σx and σz residual

stresses respectively along two different cut planes. Since these two planes have

a line in common (a − b line in Figure 2.2), along this line the σx and σz stress

distributions are both determined. Unfortunately, stresses on the edge of the cut

are the most uncertain for the contour method, so this is not the best location to

get accurate results.

The same procedure can be applied to obtain the σy component, if the cut was

made along a plane normal to the y-direction instead to the z-direction, or it is

also possible to cut in two the part in D and then apply another time the same

superposition principle. In this way, it is possible to obtain the σx, σz and σy maps

respectively along three perpendicular planes. Since these planes have one point in

common, only at this point (the geometrical center of the plate) the three normal

stress components σx, σz and σy are all determined.
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2.2.1 Numerical verification

This section will demonstrate numerically that the multiple cuts correction can

correctly determine the original stresses after multiple cuts. It will also check an

important assumption about shear stresses. For the single cut contour method,

averaging the two measured contours on the opposing surfaces created by the cut

removes any shear stress errors in calculating normal stresses [1]. With multiple

cuts, the other stress components calculated after the first cut are also used, and

shear stresses may cause errors in those.

FE simulations were used to demonstrate the validity of multiple component

theory from multiple cuts for the contour method. A 2 x 2 x 1 plate was modeled

using the ABAQUSr commercial FE code [26] and 32 x 32 x 16 mesh of 20-noded

quadratic shape function elements (C3D20), see Figure 2.3. The material behav-

ior was isotropic and linear elastic with Poisson’s ratio of 0.3. For residual stress

normalized to give a peak value of unity, the elastic modulus was taken as 1000

to give σMAX/E = 1000 µε, which is a typical magnitude for structural metals.

Residual stresses were initialized using the user FORTRAN subroutine SIGINI (see

Appendix A.1), and then one FE analysis step was performed to ensure initial equi-

librium. To simulate cutting the part in two (step B in Figure 2.2), a second analysis

step removed the elements on either half of the plate. To simulate the second cut

(step D in Figure 2.2), a third analysis step removed the elements on either half of

the remaining portion of the plate. All of these simulations were repeated removing

the opposite elements in order to get the deformations on both surfaces created by

each cut.

Figure 2.3 – FE model of the plate used in the simulations of the multiple cut
theory.

The first simulation considered a plate having no shear stresses along the plane

13



2. Theory: Multiple Components

of the first cut. The axial residual stress σx in the central 50 percent of the length

of the plate were given by a simple parabolic distribution that satisfied equilibrium:

σx(y) = 6y2 − 6y + 1 (2.5)

where the plate thickness goes from y = 0 to 1. The stresses in the outer 25

percent of plate length on both ends differed from Eq. 2.5, and the stress σy, τxy are

present in order to satisfy equilibrium and free boundary conditions. The normal

stresses σz are zero everywhere, so it means that we have a plane stress state. This

residual stress state is shown in Figure 2.4(a).
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Figure 2.4 – Simulated residual stress distribution along the first cut plane and
comparison with the simulated contour measured x: (a) with no shear stresses and
(b) with shear stresses on the first cut plane.

To apply the superposition principle, a model of the undeformed and unstressed

half of the plate was taken from the full mesh. The opposite of the average of the

two contours of the relaxed surface created by the first cut (from the second step of

the previous analysis) was applied as displacement boundary condition to the nodes

along the first cut surface (step C in Figure 2.2). In a second step analysis, only

a quarter of the original plate was considered (by removing the elements) and the

opposite of the average of the two contours of the relaxed surface created by the

second cut (from the third step of the previous analysis) was applied as displacement

boundary condition to the nodes along the second cut surface (step E in Figure 2.2).

The first step provided as results the original residual stress component σx on the

first cut surface and also the changes in the other components ( σz, σy, τxy, τxz and

τyz) (step C in Figure 2.2). The second step provided the post-relaxation residual

stress component σz (relaxed by the first cut) on the second cut surface (step E in

Figure 2.2). A simple summation of the change of σz and the post-relaxation σz
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2. Theory: Multiple Components

gives the original residual stress component σz on the second cut plane, as described

by Eq. 2.4.

Figure 2.4(a) shows the first cut results on line a − b in Figure 2.3 for case of

no shear stresses on the first cut plane. Figure 2.4(b) shows the results with shear

stresses, which will be detailed later in this section. As previously shown [1], the

normal stresses σx are correctly determined in either case.

Figure 2.5 shows the result of the multiple cuts contour method simulation for

no shear stresses on the first cut plane. Figure 2.5(a) shows the stress along the

through-thickness direction on the center of the plate (line a− b in Figure 2.3). The

reconstructed stresses (red line) match with the original residual stress (black line).

Figure 2.5(b) shows the stress along the mid-thickness line on the second cut plane.

Also in this case the reconstructed and the original stress match very well. This

first simulation confirmed that the multiple cuts theory for multiple components is

correct in the case of absence of shear stresses in the first cut plane. Since in this

case no shear stress are present, the change of the σz obtained from the step C in

Figure 2.2 is only related to the relaxation of the σx, so the FE simulation gives the

right reconstructed stresses.
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Figure 2.5 – Simulated multiple cuts contour method results for plate with no shear
stress on the first cut plane: (a) residual stress reconstruction along the through-
thickness direction (line a − b in Figure 2.3); (b) reconstruction along the mid-
thickness line (x = 0 center of the plane).

The second simulation considered a plate with both shear and normal stresses

along the plane of the first cut. The normal stresses σx along the plane of the first

cut were still given by Eq. 2.5, while the shear stresses τxy and the normal stresses

σy, that satisfy the equilibrium equations, are given by:
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2. Theory: Multiple Components

τxy(y) = 2y3 − 3y2 + y (2.6)

σy(y) = −y
4

2
+ y3 − y2

2
(2.7)

The residual stress distribution on the first cut plane is shown in Figure 2.4(b).

As before, we have a plane stress state.

Figure 2.6 shows the results of the simulated multiple cuts contour method with

shear stress on the first cut plane. Figure 2.6(a) and Figure 2.6(b) show respectively

the stress along the through-thickness direction on the center of the plate (line a− b
in Figure 2.3) and along the mid-thickness line on the second cut plane. In this case

the reconstructed stresses (red line) do not match with the original residual stress

(black line). The errors are relatively small, peaking about about 6% of the peak

stresses in the problem. In the presence of shear stress on the first cut plane, the

multiple cuts contour method gives small errors because the calculated change in

σz along the second cut plane obtained from step C (blue line in Figure 2.6(a)) are

only related to the relaxation of the σx on the first cut plane and not to the shear

stresses τxy that also relaxed on that surface. To overcome this limitation, it would

be necessary to apply the transverse displacements as BC’s, but it is currently no

experimentally possible to measure them. Going far from the first cut plane (x > 0.4

in Figure 2.6(b)) the mismatch become smaller until the reconstructed and the

known stresses match exactly because those stresses were not changed significantly

by the first cut.

The presence of shear stresses on the second cut plane before executing the second

cut does not affect the result because the contour of the resulting cut surfaces are

averaged and their effect is eliminated, as described in the Section 2.1.

2.3 SURFACE SUPERPOSITION

Once the part has been cut in two and the original σx residual stress on the cut

plane is obtained, it is also possible to determine the other original residual stresses

on same cut plane (σ
(A)
y , σ

(A)
z and τ

(A)
yz ). The same finite element calculation that

determines the original σ
(C)
x residual stress in the cut plane also determines how much

the in-plane stress components on the cut plane were changed by the relaxation from

the cut, σ
(C)
y , σ

(C)
z and τ

(C)
yz . After the cut, the post-relaxation in-plane stresses (σ

(B)
y ,

σ
(B)
z and τ

(B)
yz ) can be measured by a surface technique such as x-ray diffraction or

hole drilling, see Figure 2.2, after electrochemical removal of material affected by the

cut process (EDM affected layer [27]). A simple summation with the results of the
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Figure 2.6 – Simulated multiple cuts contour method results for plate with shear
stress on the first cut plane: (a) residual stress reconstruction along the through-
thickness direction (line a − b in Figure 2.3); (b) reconstruction along the mid-
thickness line (x = 0 center of the plane).

previous finite element calculation (Eq. 2.1) then provides the original components

of the residual stress on the plane that was cut.

σ(A)
y = σ(B)

y + σ(C)
y

σ(A)
z = σ(B)

z + σ(C)
z (2.8)

τ (A)
yz = τ (B)

yz + τ (C)
yz

This theory work only in case of no shear stress in the plane of the cut. In fact,

the execution of the cut produce the total relaxation of the stresses, σx, τxy and

τxz, on the cut plane. The change in the other stress components is affected by all

these stress relaxations. In order to overcome this limitation, it is needed to measure

the stresses on both halves of the part after the cut and averaging them. then the

surface superposition can be applied considering the average stress for the step B.

In this way the correct result will be obtained.

2.3.1 Numerical verification

This section will demonstrate numerically that the surface superposition can cor-

rectly determine the other original stress components by applying different tech-

niques.

The same FE simulations described in Subsection 2.2.1 were used to demon-

strate the validity of surface superposition theory for the contour method and its

limitations. Both case, no shear stress and with shear stress on the cut plane, were
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2. Theory: Multiple Components

considered. After the second step analysis the residual stresses normal to the cut

plane are relaxed by the cut (first cut plane on Figure 2.3). Because of that the

other stress components, σz, σy, τxy, τxz and τyz, change in order to satisfy the equi-

librium equations near the cut plane. Those stress components that are not equal

to zero on the cut plane, i.e. σz, σy and τyz, can be measured on the cut plane by

a surface technique as x-ray diffraction or hole-drilling method. By superimposing

these stress components with the change of the same stress components obtained

by the half plate simulation, i.e. the simulation of the contour method, the original

residual stress components σz, σy and τyz are obtained.

Figure 2.7 shows the result of the surface superposition with no shear stresses

on the cut plane. Figure 2.7(a) and 2.7(b) show the σz and σy stress component

respectively along the through-thickness direction on the center of the plate (line

a− b in Figure 2.3). The reconstructed stresses (red lines) match with the original

residual stresses (black lines). The shear stress τyz are not plotted because they

are always zero. So, this results confirmed that the surface superposition theory is

correct in the case of absence of shear stresses in the cut plane. Since in this case

no shear stress are present, the change of the σz and σy obtained from the step C

in Figure 2.2 is only related to the relaxation of the σx, so the FE simulation gives

the right reconstructed stresses.
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Figure 2.7 – Simulated surface superposition results for plate with no shear stress
on the cut plane: reconstruction along the through-thickness direction (line a− b in
Figure 2.3) of the (a) σz and (b) σy respectively.

Figure 2.8 shows the results of the simulated surface superposition theory with

shear stress on the cut plane. Figure 2.8(a) and Figure 2.8(b) show the σz and σy

stresses respectively along the through-thickness direction on the center of the plate

(line a− b in Figure 2.3). The shear stresses τyz are not plotted because are always

zero. In this case the reconstructed stresses (red lines) do not match with the original
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residual stresses (black lines). By averaging the remaining stresses obtained from

the two halves of the plate and superimposing with the change of the same stress

component obtained from the contour method simulation (Step C) it is possible to

obtain the right answer (brown lines).
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Figure 2.8 – Simulated surface superposition results for plate with shear stress on
the cut plane: reconstruction along the through-thickness direction (line a − b in
Figure 2.3) of the (a) σz and (b) σy respectively.
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Chapter 3

Residual Stress Specimen

3.1 INTRODUCTION

In order to validate the theoretical development, a test specimen was designed to

provide a residual stress distribution particularly well suited for this purpose. It

was desired to test the contour method on different stress states where the two

significant normal stress components were approximately equal (i.e., equi-biaxial)

and, conversely, of opposite sign. Such a stress state can be produced in a shrink-fit

ring and plug, in which the expansion of a cooled, oversized plug is constrained by a

surrounding ring resulting in biaxial compressive residual stresses in the plug. The

ring experiences compressive radial stresses under the forces from the plug, but the

hoop stresses are tensile. However, since a real ring and plug would fall apart during

contour method cutting, an alternative configuration to produce a similar residual

stress distribution was used.

3.2 DESIGN

A circular disk was plastically compressed through the thickness by two cylindrical

indenters of smaller diameter [12], see Figure 3.1(a). The compressed region between

the two indenters yields and wants to expand in the radial direction due to the Pois-

son effect. Under the constraint of the surrounding material, analogous to the ring

in the example of a shrink-fit ring and plug, a biaxial (hoop and radial) compressive

residual stress state is produced in the central region, while in the outer region there

will be a tensile and compressive residual stress state for hoop and radial stresses,

respectively (see Figure 3.1(b)).

The geometry of the specimen was then designed considering the constitutive

behavior and experimental limitations. A 60 mm diameter 10 mm thick disk was

chosen with the indenters 15 mm in diameter, see Figure 3.2. The thickness was

chosen based on the limited penetration of neutrons through steel, while the di-
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Figure 3.1 – Schematic diagram illustrating (a) the indentation process, (b) the
ideal residual stress distribution obtained.

ameters of the disk and the indenters were chosen to obtain stress gradients that

could be resolved using reasonable neutron sampling volumes, to obtain a relaxed

contour of at least 20 µm (peak-to-valley) and also considering the maximum load

of the test machine. The indenters were also designed by means of several finite

element simulations in order to minimize the stress concentrations, since there are

some fillet radii. The indenter material used was an A2 tool steel, characterized by

a high hardness (64 HRC) and a high yield stress (about 1300 MPa). The Young

modulus of A2 tool is 204 GPa with a Poisson’s ratio of 0.3. In order to center

the two indenters with respect to the disk, two PMMA rings were designed (see

Figure 3.2), which are moved out of the way prior to indentation.

Indenter (A2 steel)25.4

70

60

15

5

5
3
0

Disk (316L SS)
Centering ring (PMMA)

R1

R3

(a) (b) (c)

Figure 3.2 – Design of the indentation fixture and photo of the indentation fixture
and specimen in the load frame.
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3.3 MATERIALS

3.3.1 316L Stainless Steel

A 316L stainless steel was chosen for the material as the best compromise among

the ideal materials for the different measurement methods that will be required

to validate the multiple stress component theories. For the contour method, hole

drilling, and other relaxation methods, it is generally better to have a material with

high Sy/E in order to obtain a more relaxation. In general, the material yield

strength, Sy, limits the residual stress magnitudes. An aluminum alloy would be a

good choice (Sy/E can easily exceed 4000 µε), but unfortunately, it is not as good for

x-ray diffraction measurements. Austenitic steel has a lower Sy/E (≈ 950 µε), which

means lower relaxed strains, but it is very good for neutron diffraction and x-ray

diffraction. 316L stainless steel was chosen based on previous successful diffraction

measurements and industrial importance. The disk was machined from a hot cross-

rolled plate (457 mm x 457 mm and 12.7 mm thickness) of 316L stainless steel. The

chemical composition of the 316L stainless steel is in weight percent is shown in

Table 3.1 (in accord with the ASTM A240 and ASME SA-240).

Table 3.1 – Alloying elements of 316L stainless steel plate in weight-% in accord
with the ASTM A240 and ASME SA-240

C Mn P S Si Ni Cr Mo N Fe
0.018 1.59 0.031 0.005 0.23 10.64 16.65 2.16 0.05 balance

To measure the residual stress produced only by indentation, the material must

be stress-free. For this reason, the plate was annealed at 1050 ◦C for 30 minutes

in vacuum and then cooled to room temperature in argon in order to remove any

preexisting residual stresses. After annealing, a metallographic analysis was made

on the plate to check the grain-size (see Figure 3.3), whose average is about 50-

100 µm, with some smaller grains. The metallography also revealed the presence

of about 0.5% of ferrite, seen as dark stringers, which is not enough to cause any

multi-phase problems with the neutron diffraction measurements of residual strains.

A small amount of ferrite is typical in 316L stainless.

3.3.1.1 Stress-Strain curve

Constitutive data was required in order to model the material response during the

indentation process. For this reason several compression tests, in accord with ASTM

standard, were carried out in order to test the mechanical behavior of the material

in the through-thickness direction and in the two in-plane directions. Cylindrical
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(a) (b) (c)

Figure 3.3 – Metallography of the 316L plate after annealing. The scale bar is 100
µm long.

specimens, 9.5 mm in diameter and 12.7 mm height, were extracted from the plate.

Displacement-control compression tests with a crosshead speed of 0.046 mm/min

were executed until ∼20% of engineering strain and then unloaded. The rate was

chosen to give approximately the same strain rate as the one expected during the

specimen indentation (ε̇ = 5 · 10−5 sec−1 after correcting for machine compliance).

Figure 3.4 shows the true stress - true strain curves for the three tested material

directions. The three curves are very close. Considering that except for very local-

ized regions at the indenter edge, the plastic strains from indentation are less than

2%, the material is taken as behaving isotropically. From the slope of the linear

part (unloading) of these curves the Young’s modulus, E, was found to be 193 GPa

while the yield stress Sy is 208 MPa (0.2% offset yield strength). The linear part

of the curve during loading gave a Young’s modulus lower than the expected value

for this steel. However, after few consecutive load-unload cycles in the elastic range,

the linear loading curve rose to the expected value. Probably, the annealing process

resulted is some plasticity at very low loads.

Although not originally planned, cyclic stress-strain curves were also measured

in order to accurately model the specimens. Preliminary FE simulation of the in-

dentation process showed that the predicted residual stress field is affected, besides

by the plastic behavior during loading, also by the hardening model for unloading.

In fact, the 316L stainless steel exhibits a strong Bauschinger effect [28,29], and,

furthermore, the indentation process produces some reverse loading in the central

region. So, in order to calibrate a hardening model for the FE simulation, cyclic

compression and tension tests were performed. Two specimen were extracted from

each in-plane material direction of the 316L stainless steel plate. The specimens

were 69.85 mm long, diameter of 5.08 mm and a gage length of 15.24 mm with
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Figure 3.4 – Stress - true strain curves of uniaxial compression tests for the 316L
stainless steel.

threaded ends. Because of the small plate thickness, no cyclic specimens were made

in the through-thickness direction. Because of the small plate thickness, no cyclic

specimens were made in the through-thickness direction. Since the preliminary FE

simulations showed that the maximum equivalent plastic strain in the central re-

gion of the disk under the indenters was approximately of 2%, symmetric controlled

strain cyclic tests were executed with a strain range, ∆ε, of 4% (i.e. maximum strain

of 2%). A strain rate of 4.5 × 10−5 sec−1 was used, that is the same that occurs

in most part of the disk during the indentation. The true stress - true strain curve

of one cyclic test is shown in Figure 3.5 together with the FE isotropic, kinematic

and combined hardening model that were calibrated on this test and described in

Chapter 4. There was no significant difference in the cyclic test in the other in-plane

direction.
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Figure 3.5 – Cyclic behavior of the 316L in a uniaxial compression and tension
test.
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3.3.1.2 Slitting test

In order to verify the absence of any preexisting residual stresses, a slitting method

tests [30] was executed. A square specimen (60 mm x 60 mm x 12.7 mm) was

extracted from the annealed plate and was instrumented with two strain gages type

CEA-09-032UW-120, aligned along the rolling x-direction on the bottom surface.

The cut was executed starting from the opposite surface (top) in 0.38 mm increments

to a depth of 12.57 mm, using a EDM machine with a 250 µm brass wire (see

Figure 3.6). The original residual stress were determined from the measured strains

using the regularized pulse method [31]. The resulting stresses were lower than

10 MPa, confirming the effectiveness of the annealing process.

(a) (b)

Figure 3.6 – Slitting test: (a) cutting process and (b) EDM machine and clamping
fixture

3.3.2 Aluminum 2024-T351

Since the execution of some ESPI hole-drilling tests were originally planned in order

to validate the surface superposition theory, a material well suited for this purpose

was chosen. In detail, an aluminum 2024-T351 was chosen for the high value of

the ratio σy/E (≈ 4300 µε), that means to have a high relaxation that it is a

good advantage for the application of the contour method and hole-drilling method.

Aluminum 2024-T351 is used for aircraft fittings, gears and shafts, bolts, pistons,

rectifier parts, worm gears, fastening devices, veterinary and orthopedic equipment,

structures.

Ten disks were machined from a rolled square plate (304.8 mm x 304.8 mm

and 12.7 mm thickness) of 2024-T351 aluminium were machined ten disks. The

chemical composition in weight percent of the aluminum 2024-T351 used in this

study is showed in Table 3.2 (in accord with the ASME SB-211).
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Table 3.2 – Alloying elements of Aluminum 2024-T351 plate in weight-% in accord
with the ASME SB-211

Cr Cu Fe Mg Mn Si Ti Zn Al
0.1 3.8 0.5 1.2 0.3 0.5 0.15 0.25 balance

3.3.2.1 Stress-Strain curve

The same experimental program that was described before (see previous subsection)

was carried out. The compression tests, in accord with ASTM standard, were carried

out in order to test the mechanical behavior of the material in the through-thickness

direction and in the two in-plane directions as described in the. Three cylindrical

specimens, 9.5 mm in diameter and 12.7 mm height, were extracted from the plate.

Displacement-control compression tests with a crosshead speed of 0.045 mm/min

were executed until ∼20% of engineering strain and then unloaded. The rate was

chosen to give approximately the same strain rate as was expected during the spec-

imen indentation. Figure 3.7 shows the true stress - true strain curves for the three

tested material directions. From the slope of the linear part (loading) of these

curves the Young’s modulus, E, was found to be 73.2 GPa while the yield stress σy

is 328 MPa along the in-plane x-direction and the through thickness direction, while

in along the in-plane y-direction σy was 282 MPa.
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Figure 3.7 – Stress - true strain curves of uniaxial compression tests for the alu-
minum 2024-T351.

As described before, in order to calibrate a hardening model for the FE sim-

ulation, several cyclic uniaxial compression and tension test were executed. Two

specimens were extracted from each in-plane material direction of the 316L stain-

less steel plate. The specimens were 69.85 mm long, diameter of 5.08 mm and a

gage length of 15.24 mm with threaded ends. Since the preliminary FE simulations

showed that the maximum equivalent strain in the central region of the disk was
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3. Residual Stress Specimen

approximately of 2%, symmetric controlled strain cyclic tests were executed with a

strain range, ∆ε, of 4% (i.e. maximum strain of 2%). A strain rate of 4.5×10−5 sec−1

was used, that is the same that occurs in most part of the disk during the indenta-

tion. The true stress - true strain curves of the cyclic tests executed are shown in

Figure 3.8.
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Figure 3.8 – Cyclic behavior of the aluminum 2024-T351 in a uniaxial compression
and tension test in the two in-plane directions.

3.3.2.2 Slitting test

Two slitting method tests [30] were executed to measure the as received stresses in

both in-plane directions for the 2024-T351 Aluminum plate. Two square specimens

(60 mm x 60 mm x 12.7 mm) were extracted from the plate and each were instru-

mented with two strain gages type CEA-13-062UW-350, aligned along the in-plane

x-direction and the in-plane y-direction respectively, both on the bottom surface.

The cut was executed starting from the opposite surface (top) in 0.254 mm incre-

ments to a depth of 9.652 mm, using a EDM machine with a 250 µm brass wire (see

Figure 3.6). The resulting stresses were lower than 10 MPa in both directions.

3.4 INDENTATION TESTS

Several disks of both, the 316L stainless steel and the 2024-T351 aluminium, were

indented in the same experimental condition in order to virtually get the same

residual stress field. The details of the various tests are reported in subsequent

sections.
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3. Residual Stress Specimen

3.4.1 316L SS disks

The specimen was indented to a peak load of 90 kN under displacement control

using a crosshead speed of 0.15 mm/min. A MOLYCOTEr anti-friction coating

was applied on the contact surfaces of the two indenters. Since the displacement

measurement (blue curve in Figure 3.10) is affected by the compliance of the speci-

men, the indenters, the lubricant and part of the test machine, due to the position of

the sensor (see Figure 3.9), three preliminary tests without any specimen (indenter

versus indenter) were executed to the same maximum load to measure the in se-

ries compliance of the indenters-lubricant-test machine (green curve in Figure 3.10)

and also to eliminate some hysteresis effect. Then the indentation of two disk were

executed and a footprint in both side of the disks was produced with a thickness

reduction of -0.85%. Another indenter-indenter test was executed after the indenta-

tion of the two disks in order to check possible changes. By subtracting the measured

displacements of the two tests, the displacements at the indenter-specimen interface

were obtained (red curve in Figure 3.10). In the Figure it is also plotted the FE

prediction of the indentation process that will be described in the next Section.

Figure 3.9 – Indentation fixture and displacement measurement location

3.4.2 Aluminum 2024-T351 disks

The specimen was indented to a peak load of 99.6 kN under displacement control

using a crosshead speed of 0.14 mm/min. A MOLYCOTEr anti-friction coating

was applied on the contact surfaces of the two indenters. Since the displacement

measurement (blue curve in Figure 3.11) is affected by the compliance of the speci-
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3. Residual Stress Specimen
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Figure 3.10 – Load - displacement curves of the indentation process and FE pre-
diction for the 316L SS disk.

men, the indenters, the lubricant and part of the test machine, due to the position of

the sensor (see Figure 3.9), three preliminary tests without any specimen (indenter

versus indenter) were executed to the same maximum load to measure the in se-

ries compliance of the indenters-lubricant-test machine (green curve in Figure 3.11)

and also to eliminate some hysteresis effect. Then the indentation of two disk were

executed and a footprint in both side of the disks was produced with a thickness

reduction of -0.44%. Another indenter-indenter test was executed after the indenta-

tion of the two disks in order to check possible changes. By subtracting the measured

displacements of the two tests, the displacements at the indenter-specimen interface

were obtained (red curve in Figure 3.11). In the Figure it is also plotted the FE

prediction of the indentation process that will be described in the next Section.
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Figure 3.11 – Load - displacement curves of the indentation process and FE pre-
diction for the aluminum 2024-T351 disk.

29



Chapter 4

Modeling

In order to evaluate the residual stress field produced by the indentation process, a

FE simulation was executed. So the predicted residual stress can be compared with

the results of the experimental tests executed in this study, and in the future can

be compared with other residual stress measurement techniques.

4.1 FEM PREDICTION OF THE 316L SS DISK

The residual stress field produced by the indentation was simulated using the ABA-

QUSr finite element code [26]. A half-symmetry axi-symmetric model of the speci-

men was built using 15,000 four-node quadrilateral elements (CAX4R) with reduced

integration. Square elements 0.1 mm on a side gave a 50 x 300 mesh in the disk. The

indenter was modeled using the same element type but with a coarser mesh of 8,725

elements approximately 0.2 mm on a side. Figure 4.1 shows the FE model. The

contact behavior between the indenter (master surface) and the disk (slave surface)

was assumed frictionless because the lubricant was used during the experimental

test, and a surface-to-surface contact algorithm was used. Axi-symmetric bound-

ary conditions were imposed along the axis of the indenter and the specimen, while

symmetric boundary conditions were imposed on the middle plane of the specimen.

A displacement of -0.09 mm in the z-direction was applied at the upper face of

the indenter (the actual cross-head displacement is the double due to the symme-

try) in order to achieve the applied load of -90 kN, which is in agreement with the

experimentally applied load.

In order to better predict the residual stress produced by indentation, it is needed

to use in the FE analysis a very accurate model of the hardening behavior of the ma-

terial. Thus, the behavior of 316L stainless steel first was modeled using an isotropic

and a kinematic hardening model, both initially calibrated on the compression-only

experimental data. The load-displacement curves obtained from the FE analysis

for both isotropic and kinematic hardening do not exhibit any noticeable differ-
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Figure 4.1 – Details of the axial-symmetric finite element model used showing the
planes of symmetry.

ence, except a little difference during the unload for less than 10 kN. This is due to

Baushinger effect. However both models gave a wrong response in case of reverse

loading. These models were calibrated running FE analysis on a simple one element

model, subjected to a uniaxial compression of -2% of true strain in the first step,

followed by a tensile strain of 2% in the second step. As response, the isotropic hard-

ening predict higher tensile stress than the experimental data after reverse loading

(see Figure 4.2), while the kinematic model gave lower stress. The predicted residual

stress obtained using these two hardening models are showed in Figure 4.3. It is

evident that the different hardening model affects the residual stress because reverse

loading happens.
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Figure 4.2 – Hardening behavior of the 316L in a uniaxial compression and tension
together with the FE combined hardening model.

Since the experimental data from the cyclic test are in between the isotropic and
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4. Modeling

kinematic hardening models (see Figure 4.2), a combined hardening model, that

involves a kinematic term and an isotropic one in its formulation, was used. In

detail, the combined hardening model provided by ABAQUSr [32] was used. This

hardening model is based on the work of Lemaitre and Chaboche [28]. The pressure

independent yield surface is defined by

F = f(σ −α)− σ0 = 0 (4.1)

where σ0 is the size of yield surface and f(σ −α) is the equivalent Mises stress

with respect to the back-stress tensor α, that is defined by

f(σ −α) =

√
3

2
(S−αdev) : (S−αdev) (4.2)

where S is the deviatoric stress tensor, αdev is the deviatoric part of the back-

stress tensor and the symbol : is the double contracted product.

The isotropic hardening behavior of the model defines the evolution of the yield

surface size, σ0, as a function of the equivalent plastic strain, ε̄pl

σ0 = σ0 +Q(1− e−bε̄
pl

) (4.3)

where σ0 is the yield stress at zero plastic strain, Q and b are material parameters.

The non-linear kinematic hardening component is defined by an additive combina-

tion of a linear term and a relaxation term, which introduces the non-linearity:

α̇ =
C

σ0
(σ −α) ˙̄εpl − γα ˙̄εpl (4.4)

The parameters for this combined hardening model were calibrated from the

cyclic test described before using the procedure described in [26] and their values

are: σ0 = 185 MPa, C = 28722 MPa, γ = 230.7, Q = 100 MPa and b = 12.

The indenter material (A2 tool steel) was modeled by assuming linear elastic

behavior, since the stresses do not approach yield, that is more that 1350 MPa,

during indentation.

The load-displacement curve obtained from the FE analysis considering the com-

bined hardening model is showed in Figure 3.10. Figure 4.3 shows the comparison

of the FE prediction of the hoop and radial stress due to indentation using the
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Figure 4.3 – FEM prediction of the hoop residual stresses along the diameter mid-
thickness line using an isotropic, kinematic and combined hardening models of the
316L stainless steel respectively.

isotropic, kinematic and combined hardening model respectively. The stresses un-

der the indenter are quite sensitive to the hardening model because of significant

reverse plasticity. Figure 4.4 shows the contour maps of the radial, hoop and axial

residual stress predicted using the combined hardening model that better simulates

the 316L stainless steel.

-5

0

5
-30 -20 -10 0 10 20 30

i

 (a) Radial stress 
r

is zero (MPa)

z 
(m

m
)

-200 -160 -120 -80 -40 0 40 80 120
dash line

-5

0

5
-30 -20 -10 0 10 20 30

 z
 (m

m
)

(b) Hoop stress 

 r (mm)

 r (mm)

-5

0

5
-30 -20 -10 0 10 20 30

 z
 (m

m
)

 r (mm)

 (c) Axial stress 
z

Figure 4.4 – FEM prediction of the radial, hoop and axial residual stresses along
the diameter plane using a combined hardening model of the 316L stainless steel.
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4. Modeling

4.2 FEM PREDICTION OF THE ALUMINUM 2024-T351 DISK

The same FE simulation (see Section 4.1) was executed in order to predict the

residual stress field produced by the indentation process on the aluminium 2024-

T351 disk. The same FE model described before was used. However, a displacement

of -0.11 mm in the z-direction was applied at the upper face of the indenter in order

to achieve the applied load of -99.6 kN, which is in agreement with the experimentally

applied loads. The elastic behavior of the aluminium 2024-T351 was modeled using

a Young modulus of 73.2 GPa and a Poisson’s ratio of 0.33. The hardening behavior

was modeled using the same combined hardening model described by Eqs. 4.1-4.4,

which parameters were calibrated from the cyclic test using the procedure described

before and their values are: σ0 = 219.9 MPa, C = 67145 MPa, γ = 412, Q =

200 MPa and b = 7, and shown in Figure 4.5 together with the experimental curve

of the cyclic test.
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Figure 4.5 – Hardening behavior of the aluminum 2024-T351 in a uniaxial com-
pression and tension together with the FE combined hardening model.

Figure 4.6 shows the FE prediction of the residual stress field (radial, hoop and

axial stresses) on the aluminum 2024-T351 disk produced by the indentation process

using the combined hardening model described by Eqs. 4.1-4.4, along the diameter

plane.
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Figure 4.6 – FEM prediction of the radial, hoop and axial residual stresses along
the diameter plane using an isotropic hardening model of the aluminum 2024-T351.
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Chapter 5

Experiment: Neutron

Diffraction

A neutron diffraction experiment was executed on the the 316L stainless steel disk

in order to measure the residual stress field produced by the indentation process.

This measurement will be useful to verify the FE prediction of the residual stress

field and to compare with the other experimental measurement that were executed

on the indented disks.

5.1 OVERVIEW

The physical principles of residual strain measurement by neutron and X-ray diffrac-

tion are identical. However, the deep penetration of thermal neutrons into engineer-

ing materials means that the experimental methods differ and that the strain in-

formation obtained nondestructively at depth complements, rather than supplants,

the X-ray method. Thus, for example, the emphasis in neutron diffraction in on

determination strain throughout the thickness of a steel component, whereas X-rays

provide a measurement of the strain averaged over a few microns near the surface.

A detailed description of the diffraction technique and its principle it is described

in Chapter 8.

5.2 EXPERIMENTS

The neutron diffraction (ND) measurements were made using the SMARTS instru-

ment (see Figure 5.1) at Los Alamos Neutron Science Center (LANSCE). LANSCE

is a pulsed neutron source where the neutrons are generated by accelerating protons

in a linear accelerator and bombarding them into a tungsten target.

Every time a proton pulse hits the target a burst of neutrons is generated by

spallation. Each pulse of neutrons contains a spectrum of wavelengths and is moder-
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5. Experiment: Neutron Diffraction

Figure 5.1 – Experimental setup of the neutron diffraction test at SMARTS. The
disk is in the center. The radial collimators are purple and the slit defining the
width of the incident beam is in front of the disk.

ated by passing through a chilled water moderator at 10 ◦C. The incident flight path

on SMARTS is 31 meters, most of it in a neutron guide. SMARTS has two detector

banks at plus and minus 90 degrees to the incident beam with a diffracted flight

path length of about 1.5 m, see Figure 5.2(a). The total flight path, the scattering

geometry and the 20 Hz repetition rate of the source dictates that the useable wave-

length range on SMARTS is about 0.4 to 3.8 Å with maximum intensity between

0.5 to 1.5 Å.

A typical diffraction pattern for the 316L stainless steel from this study is shown

in Figure 5.2(b). As seen in Figure 5.2(b), many peaks from the austenitic stainless

steel are present enabling Rietveld full pattern analysis [33]. Being able to use

multiple peaks in the refinement greatly improves the statistics, and using the GSAS

software [34] we can determine the lattice parameter, a, of the fcc crystal structure

with a relative accuracy of about 50 × 10−6, or 50 microstrain (µε), using count

times on the order of 20 minutes. The incident slits were set to 2 × 2 mm2, and

a set of radial collimators limited the gauge volume to 2 mm along the incident

beam path. An indented disk (disk A) was positioned so that the scattering vector

for the +90 degrees bank, Q1, was along the axial (z) direction, and the scattering

vector for the -90 degrees bank, Q2, was along the radial (r) direction of the disk.

A series of measurements were made on a diameter plane by first scanning along

the direction of Q2 = r (see Figure 5.2(a) and 5.3). Then the disk was rotated 90

degrees around the axial z direction, and another scan was performed in the vertical
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Figure 5.2 – (a) Schematic setup of SMARTS for spatially resolved measurements,
and (b) Typical diffraction pattern. The red crosses are the data, the green line
is the Rietveld refinement and the magenta line is the difference curve. The black
tick-marks indicate the positions of the face-centered cubic peaks.

direction (out of the plane of the paper in Figure 5.2(a)). Hence the first and second

scans were made in the same physical positions within the disk, but in the first scan

the radial strains,εr, were measured in the -90 degrees bank, and in the second scan

the hoop strains, εθ, were measured in the -90 degrees bank. In both scans the axial

strains, εz, were measured in the +90 degrees bank. Further measurements were

also executed on an un-indented disk (disk C), so supposed stress free because of

the annealing process, also verified by slitting test.

The lattice strains are calculated based upon a stress-free reference measurement.

In this case the average stress-free lattice parameters from a series of measurements

on three small cubes (5 mm × 5 mm × 5 mm) were determined. Then the residual

strains can be calculated as follows:

r

zgauge volumes

Figure 5.3 – Location of gauge volumes (2 mm x 2 mm x 2 mm) for the neu-
tron measurements. Some gage volumes are colored gray in order to distinguish
overlapping volumes.
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5. Experiment: Neutron Diffraction

εi =
ai
a0
i

− 1 i = r, θ, z (5.1)

where ai and a0
i are the stresses and unstressed lattice parameters, respectively, in

the test specimen and in the stress-free cubes along the different directions (r, θ and

z). Then the residual stress components were evaluated using Hooke’s law:

σi =
E(1− ν)

(1 + ν)(1− 2ν)
[εi +

ν

1 + ν
(εj + εk)] i, j, k = r, θ, z (5.2)

where E is the elastic modulus, and ν is Poisson’s ratio.

5.3 RESULT

Figure 5.4 shows the residual stress components measured calculated with Eq. 5.2

from the neutron diffraction measured elastic strains. The maps are very similar to

the one of the FE prediction shown in Figure 4.4 for the 316L stainless steel indented

disk. The finer features of the prediction are not resolved because of experimental

limits on both stress and spatial resolution.

Figure 5.5 shows the radial and the axial residual stresses measured by neutron

diffraction along the mid-thickness line of the disk together with the FE predictions.

The hoop residual stresses measured by neutron diffraction are showed in Figure 7.21

at pag. 64 together with the contour method results. The agreement between the

neutron measurements and the FE prediction in excellent for all three residual stress

components and it confirms the precision and effectiveness of the indentation process

to introduce well known residual stress into samples.
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with neutron diffraction on the diametrical plane.
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Figure 5.5 – Radial and axial residual stresses measured with neutron diffraction
plotted with the FE prediction along the mid-thickness line (z=0 mm), for z =
±1.65 mm and for z = ±3.3 mm respectively. (hoop stress are showed at pag. 64
together with the contour results)
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Chapter 6

Experiment: Slitting Method

In order to further validate the FE prediction of the residual stress, two slitting

tests were executed on the the 316L stainless steel and aluminum 2024-T352 indented

disks respectively, in order to measure the residual hoop stress, σθ, by the indentation

process. This measurement will be useful also to compare the accuracy of this

method with the other experimental techniques used in this study. Because the

slitting method assumes a 1-D stress variation and there are 2-D variations in the

disks, the slitting results are not expected to be as accurate.

6.1 INTRODUCTION TO SLITTING METHOD

In the slitting method (crack compliance) [30,35], see Figure 6.1, a narrow slit is

incrementally cut into a part containing residual stresses. Stresses are relaxed and

the part deforms, which is assumed to occur elastically. At an appropriate location

strains are measured at discrete slit depths, a,

ε(ai) = εi (6.1)

where there are m slit depths i = 1,m, also called ”number of cuts.”

y

x

a
y(x)

Figure 6.1 – The incremental slitting method for measuring residual stress.

Assuming that the stresses do not vary in the z-direction, the strain measured
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6. Experiment: Slitting Method

at an arbitrary cut depth is related to the residual stresses that originally existed

on the plane of the cut by a Volterra equation of the first kind,

ε(a) =

∫ a

0

c(a, x)σy(x)dx (6.2)

where c is a function of the geometry and the material elastic constants. Since a

closed-form inverse solution for σy(x) is not available, it is assumed that the stress

can be approximated as a series expansion in analytic basis functions

σy(xi) = σi =
n∑
j=1

AjPj(xi) = [P ]{A} (6.3)

The second equality introduces matrix notation for convenience; [P ] has rows

corresponding to spatial positions xi and columns corresponding to terms j in the

series expansion. The solution for σ now requires choosing an expansion order n

and determining the basis function amplitudes Aj. The solution strategy requires

determining the strain release Cj(ai) that would occur at a = ai if σy(x) were exactly

given by Pj(x). Using elastic superposition, the strain that would be measured for

the σy(x) from Eq. 6.3 is then given by

εf (ai) = εf,i =
n∑
j=1

AjCj(ai) = [C]{A} (6.4)

where the subscript f refers to these calculated strains being determined by a least

squares fit minimizing the difference between the measured strains, ε, and calculated

strains:

{A} = [([C]T [C])−1[C]T ]{εmeasured} = [B]{ε} (6.5)

6.2 EXPERIMENTS

Experiments were performed on a 316L stainless steel indented disk and an alu-

minum 2024-T351 indented disk. The disks, as said before, were 60 mm in diameter

and 10 mm thick. the slitting method was applied in order to measure the hoop

stresses along the diameter plane. A cut was made incrementally, and the hoop

stress component normal to the cut plane is determined. For each specimen, one

strain gage was placed very close to the cut on the surface where the cut begins (top),
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6. Experiment: Slitting Method

and another is placed centered on the cut plane on the opposite surface (bottom)

(see Figure 6.2). The gages used were Micro-measurements CEA-09-032UW-120

and CEA-09-062-UW-350 gages respectively on the top and bottom surfaces of the

316L stainless steel disk. Instead for the aluminum 2024-T351 were used a CEA-

13-032UW-120 gage on the top surface and a CEA-13-062UW-350 on the bottom

surface.

top gage

bottom gage

cut

rz

(a)

Figure 6.2 – (a) Test procedure and strain gage layout; (b) EDM cut of the disk.

The cuts were executed along the diameter plane as showed in Figure 6.2 using

wire electrical discharge machining (EDM) with a 250 µm diameter brass wire. The

machine was set to ”skim cut 2” setting to minimize the stress induced during

cutting [19]. The slot was cut in 1.524 mm increments to a depth of 57.92 mm (38

cuts). After each increment, the gage readings were taken. During the test, at the

first and third cut, there was a long break because of some problem with the EDM

machine. So, before starting again the readings were taken another time and used

to correct the data. The test on the aluminum 2024-T351 disk was performed under

the same conditions as the previous test. Figure 6.3(a) and 6.3(b) show the strains

measured during the cuts for the 316L stainless steel disk and for the aluminum

2024-T351 disk respectively.

The original residual hoop stresses, σθ, were determined from the measured

strains using the series expansion approach [30,36], which is very tolerant of noise

and errors in the measured strains [37]. It is first assumed that the unknown stress

variation as a function of the through-thickness coordinate can be expressed as a

series expansion, see Eq. 6.3. For this application, Legendre polynomials, Li(x), ex-

panded over the thickness of the plates were chosen for the Pi because, by excluding
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Figure 6.3 – Measured strains, (a) 316L stainless steel indented disk and (b) alu-
minum 2024-T351 indented disk.

the 0th and 1st order polynomials, the resulting stress distribution is guaranteed to

satisfy force and moment equilibrium. Thus the expansion in Eq. 6.3 starts with

the 2nd order Legendre polynomial, L2(x).

The strains that would be measured at the cut depths aj are calculated for

each term in the series. These are called the compliance functions Cij. Using

superposition, the strains given by the series expansion can be written as Eq. 6.4. A

least square fit to minimize the error between the strains given by Eq. 6.4 and the

measured strains gives the Ai, and hence the stresses by Eq. 6.3, and can be written

as Eq. 6.5.

A finite element (FE) model was used for calculating the compliance functions

Cij. The use of finite elements to determine calibration coefficients is commonplace

and described in more detail elsewhere [30,38,39,40,41]. The calculations were car-

ried out using the commercial code Abaqusr [26]. The calculations were executed

using 2-D FE model of half disk. A 2-D plane stress mesh was used with quadratic

shape function elements (CPS8) sized at about 1 mm. The elastic modulus was taken

equal to 1 and Poissons ratio equal to 0. Only half of disk was meshed because of

symmetry about the cut plane. Incremental cutting was simulated by incrementally

removing symmetry displacement boundary conditions on the cut plane. The el-

ements edges defining the exposed face of the slit were loaded with a nonuniform

pressure distribution sequentially corresponding to L2(x) through L16(X), i.e. form

2nd to 16th order Legendre polynomials. The remaining surfaces were taken as

traction free. The strains for the top strain gage in Figure 6.2 was then calculated

by computing the relative displacement of the nodes corresponding to the begin and

end of the strain gauge and dividing by initial length between the nodes. For the
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6. Experiment: Slitting Method

gauge centered on the symmetry plane was only needed to consider the displace-

ment of the nodes corresponding to the center and end of the strain gauge. Note

that this FE model approximated the actual, finite-width slot (∼ 0.29 mm) as a

crack. For the gage positions in these tests, the error caused by this approximation

is quite small [42]. Hence, the extra effort to mesh the actual slot width is not jus-

tified. Finally, the series expansion coefficients Ai were determined by least squares

fit (Eq. 6.5) using the measured strains for the relevant gages and the FE-calculated

compliance functions. The order of fit was chosen to minimize the uncertainty in the

calculated stresses [38,43]. A Height term series (Legendre polynomial order 2 to 9)

was sufficient for fitting the data for the 316L disk, instead for the aluminium disk

test it was required 11 terms (Legendre polynomial order 2 to 12). The coefficients

were multiplied for appropriate conversion factor in order to take account of the

actual elastic modulus.

6.3 RESULTS

Figures 6.4(a) and 6.4(b) show the residual hoop stresses, σθ, measured along the

diameter plane of the 316L stainless steel disk and the aluminum 2024-T351 disk,

considering only the bottom gage (blue curves) and both gages (red curves). Fig-

ures 6.4(a) also shows the FE prediction averaged over the thickness (black curve)

for the 316L stainless steel disk, because in this application of the slitting method

the measured strain are affected by the relaxed stress over the thickness. So, this

average is more reasonable to compare with the slitting result.
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Figure 6.4 – Residual hoop stress, σθ, (a) 316L stainless steel indented disk and
(b) aluminum 2024-T351 indented disk.

For the 316L stainless steel disk, the residual stress distribution considering the

bottom gage only does not look good, in fact it does not make sense for low depth
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and are not symmetric, even though the strain fit is fairly stable and the strains

are fitted well. Considering both gages in the calculation, the stresses (red curve

in Figure 6.3(a)) look slightly better even thought is not possible to fit both gages

well at the same time. Not fitting both gages at same time can be an indicator of

2D stresses over cross section in thick specimens. Then, the early strain readings

on back gage also seem very un-physical, they are increasing in magnitude too fast.

There may be EDM induced stress effects on the top gauge because of the large wire

used.

For the aluminum 2024-T351, the residual stress distribution look better and of

very good quality, even thought the top gage data do not seem quite right. For

bottom gage only, the strain fit was very stable except near the front, which is

expected since the strains are low, and the strain fit was good enough. Instead

considering both gages, the strain fit are very good and the stresses are more stable.

Then, the stress distribution is very symmetric, how it is supposed to be. The

agreement with the FE prediction is not great in the center of the disk with difference

up to 50 MPa.

The results for both test use plane stress calibration coefficients because of the

small thickness compared to the diameter. However the stress results could be

multiplied by 1/(1− ν2) to obtain the stress in case of plane strain.

For future similar test, it is needed to take smaller cut increments for low depth

in order to have better top gage data.
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Chapter 7

Experiment: Contour Method

This chapter presents traditional contour method measurements on the specimens

used to validate the theories in Chapter 2. Before the steel and aluminum disks,

results are presented from a preliminary study on a quenched steel plate. Results

from second cuts on some specimens are presented, but the superposition results to

evaluate the new theories are presented in later chapters.

7.1 HSLA-100 QUENCHED PLATE

In this section it is presented the application of the classical contour method to

two cuts on a HSLA-100 quenched plate in order to eventually evaluate the residual

stress components along the two in-plane directions and in order to validate the

new theoretical development proposed in this thesis. In fact, the particular residual

stress field of this quenched plate (equi-biaxial) is well suited to validate the theory.

7.1.1 Experiments

The plate material tested in this study was a low carbon, copper precipitation-

hardened, High-Strength Low-Alloy steel: HSLA-100. This steel is used for naval

ship hulls, armor, and containment vessels. The chemical composition is given in

Table 7.1. The 60.75 mm thick plate material was prepared by hot cross-rolling. It

was austenitized at 900 ◦C for 75 minutes and then water quenched. The plate was

then tempered at 660 ◦C for 200 minutes followed by another water quench. The

specification for this material does not allow thermal stress relief because of potential

loss of strength. Therefore, the quenching stresses can be expected for all uses of

this material. Mechanical testing gave yield strengths of 690 MPa in the final rolling

direction and 685 MPa in the transverse direction, with corresponding ultimate

strength of 813 MPa and 829 MPa, respectively. A section of plate measuring

151.6 mm and 301 mm long was saw cut from a larger plate for this measurement
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7. Experiment: Contour Method

of residual stress (see Figure 7.1).

Table 7.1 – Alloying elements of HSLA-100 steel plate in weight-%

C Mn P S Cu Si Ni Cr Mo V Ti Al
0.06 0.85 0.005 0.002 1.56 0.26 3.45 0.56 0.58 0.003 0.001 0.025

The specimen was cut in half on the first measurement plane indicated in Fig-

ure 7.1 using wire electric discharge machining (EDM) and a 150 µm diameter brass

wire. The part was submerged in temperature-controlled deionized water through-

out the cutting process. ”Skim cut” settings, which are normally used for better

precision and a finer surface finish, were used because they also minimize any recast

layer and cutting-induced stresses [35]. Because the part deforms during the cutting

as stresses are relaxed, the cut could deviate from the original cut plane, which

would cause errors in the measured stresses. Therefore, the part was constrained by

clamping it on both sides of the cut to a steel plate, which was in turn clamped in

the EDM machine (see Figure 7.2). To prevent any thermal stresses, the specimen

and the fixture were allowed to come to thermal equilibrium in the water tank before

clamping.

  301 mm 

 151.6 mm

76.2 mm

1
st

Cut Plane

2
nd

 Cut Plane 

149.75 mm

x
 z 

  y 

b

a60.75 mm

Figure 7.1 – Dimension of the HSLA specimen and cut locations.

After cutting, the plate was removed from the clamping fixture. The contours of

both surfaces were measured using a MS Impact II coordinate measuring machine

(CMM), an inspection tool that uses a touch probe. A 1 mm diameter spherical

ruby tip was used on the probe. The cut surfaces were measured on a 0.5 mm spaced

grid, giving about 36.500 points on each cut surface.

Figure 7.2 shows the front half of the specimen being cut in half another time

along the second cut plane shown in Figure 7.1. The procedure, the machine and

the working conditions were the same of the first cut. After cutting, the plate was

removed from the clamping fixture. The contours of both surfaces were measured
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7. Experiment: Contour Method

Figure 7.2 – Half of the original specimen and the clamping fixture to execute the
2nd cut on the EDM machine.

by a different CMM machine, this time using a non-contact probe (see Figure 7.3).

The specimen was scanned using rows separated by 0.5 mm with data points within

a row sampled every 0.095 mm, giving about 171.000 points on each cut surface.

Figure 7.3 – HSLA specimen being scanned in Coordinate Measuring Machine
using non-contact probe.

7.1.2 Calculations

The procedure for analyzing the data to calculate stresses is presented in more detail

elsewhere [2]. The relevant details for this experiment are presented here.

Figure 7.4 shows the average of the contours measured on the two opposing

surfaces created by the first cut (Figure 7.4(a)) and then smoothed by fitting the

data to a surface using bivariate smoothing spline (Figure 7.4(b)) [2]. The peak-to-

valley amplitude of the contour is about 50 µm. The primary shape of the contour

is low in the mid-thickness of the plate and higher toward the top and bottom.
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Figure 7.5 shows the same result for the second cut. The peak-to-valley amplitude

of the contour is about 50 µm, very close to the first cut surface, but this time

the rough contour (Figure 7.5(a)) is affected by more noisy due to the different

measurement technique (non-contact probe).

(a) (b)

Figure 7.4 – Contour measured on the first cut surface: (a) rough data; (b) spline
smoothed data.

(a) (b)

Figure 7.5 – Contour measured on the second cut surface: (a) rough data; (b)
spline smoothed data.

The σx stresses that were originally present on the plane of the first cut were cal-

culated numerically by elastically deforming the cut surface into the opposite shape

of contour that was measured at the same surface [1]. This was accomplished using

the ABAQUSr 6.5 commercial FE code [26] and a 3-D elastic finite element model

(see Figure 7.6(a)). A model was constructed of the front half of the specimen shown

in Figure 3 (the condition after it had been cut in two). The mesh used 211.680 lin-

ear hexahedral (8 node) elements. The material behavior was isotropic elastic with
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an elastic modulus of 197 GPa and a Poisson’s ratio of 0.29. In order to smooth out

noise in the measured surface data and to enable evaluation at arbitrary locations,

the data were fitted to a bivariate smoothing spline. The bivariate smoothing spline

fits to the measured contour data were evaluated at a grid corresponding to the

FE nodes, averaged between the two cut surfaces deformed into the opposite of the

measured contour.

(a) (b)

Figure 7.6 – FE model of HSLA-100 steel plate deformed into opposite of measured
shape in order to calculate original residual stresses: (a) after the first cut and (b)
after the second cut, Deformation magnified by 400. This mesh corresponds to the
front half of the specimen in Figure 7.1.

As described before, the σz stresses that were present on the second cut plane

after the execution of the first cut (step B in Figure 2.2) were calculated numerically

by elastically deforming the second cut surface into the opposite shape of contour

that was measured on the same surface. This was accomplished using half of the

previous 3-D FE model (see Figure 7.6(b)), by using the removing elements com-

mand in the second step of the previous FE analysis. The same fitting method was

used to smooth the measured surface. This time was more noise in the data because

of the probe used [2].

7.1.3 Results

Figure 7.7 shows the σx residual stresses on the first cut plane from Figure 7.1 (step

A=C in Figure 2.2). Typical quenching stresses, tension in the center balanced by

compression at the top and bottom, are evident. Within about 20 mm of the lateral

edges, the stresses are noticeably different from those in the central region. Those

edge effects are consistent with stress relaxation when the test specimen was removed
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from a large quenched plate, as was demonstrated by a finite element simulation of

the stress relaxation caused by removing the test specimen [24].
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Figure 7.7 – Original σx residual stresses (Step A in Figure 2.2) in HSLA-100
specimen measured by the contour method on the first cut plane.

Figure 7.8 shows the σz residual stresses on the second cut plane from Figure 7.1

after the second step of FE analysis (step B=E in Figure 2.2). This stress map is

very similar to the previous map (Figure 7.7), but in the left edge the effect of the

first cut is evident (the right edge shows the effect or the original removal of the test

specimen from a large quenched plate).
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Figure 7.8 – Residual stresses σz in HSLA-100 specimen after the second cut (step
B=E in Figure 2.2) measured by the contour method on the second cut plane
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7.2 316L STAINLESS STEEL DISKS

In this section it is presented the application of the classical method to four 316L

stainless steel disks (disks: A, B, C and D). In detail, disks A and B were indented

in the same condition, so virtually they should have the same residual stress field.

Disk C and D were not indented so they should not be subjected to significant

residual stresses, because the 316L SS plate was annealed. The indented disk A and

the blank one C were the same scanned by neutron diffraction. Furthermore, the

indented disk B was cut another time along a plane normal to the first cut plane,

in order to apply the multiple cut contour method.

7.2.1 Experiments

The contour method (CM) was applied to both the indented disks (disk A and B)

and, as a control, to the unindented disk (disk C and D). The conventional contour

method was applied to measure the hoop stress over a diametrical cross section.

The intended disk A and a not-indented disk C were the same planes scanned by

neutron diffraction (see Chapter 5).

The disks A and C were cut in half along the same planes scanned by neutron

diffraction using a wire electric discharge machining (EDM) Mistsubishi SX-10 and

a 50 µm diameter tungsten wire, and Epak 405 and ”skim cut” settings were used.

Instead, disks B and D were cut in half using the same EDM machine but with a

100 µm diameter brass wire (that is the usual size for contour cutting) and using

Epak 432, skim cut 1 for 1/2 in. thick steel settings, and adaptive control were used

for these cutting. All the parts were submerged in temperature-controlled deionized

water throughout the cutting process. The parts were constrained by clamping on

both sides of the cut to the work plate of the EDM machine (see Figure 7.9), known

as the ”bridge” clamping system [4]. To prevent any thermal stresses, the specimens

and the fixture were allowed to come to thermal equilibrium in the water tank before

clamping. As it is possible to see from Figure 7.9, the clamp directions were parallel

to the wire axis and perpendicular to the cutting direction. Cut processes took about

12 hours for the indented disk A and the blank disk C, instead for the indented disk

B and the blank one D it took about 2.5 hours. A test slit was cut on another

not-indented disk (disk D) using the 50 µm tungsten wire and then the resulting

cut width was measured with the microscope giving about 82 µm.

After cutting the disks, the contours of the resulting four surfaces of the disks A

and C halves were measured using a Taylor-Hobson Talyscan 250 laser scanner [44].

A laser triangulation probe of 2 mm range and resolution of 0.1 µm was used. The

cut surfaces were measured on a 0.1 mm spaced grid, giving about 60.000 points
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(a) (b)

Figure 7.9 – 316L disk and the clamping fixture to execute the cut on the EDM
machine.

on each cut surface. As it is possible to see from Figure 7.10, the four disk halves

were positioned on the work plane of the laser scan machine, aligning the axis of the

halves, so the following data alignment and data reduction were easier.

(a) (b)

Figure 7.10 – 316L disks A and C being scanned using a Taylor-Hobson Talyscan
250 laser scanner.

Instead, the contours of the resulting four surfaces of the disks B and D halves

were measured using the laser scan machine described in [2] and shown in Fig-

ure 7.11. The cut surfaces were scanned using rows separated by 0.1 mm in the

axial direction, z, with data points within a row sampled every 0.04 mm, giving

about 113.000 points on each cut surface.
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Figure 7.11 – Laser scanner machine used to measure disk B and D.

7.2.2 Calculations

The raw data was processed into a form suitable to calculate stresses using a proce-

dure described in detail elsewhere [2]. Data points from when the probe was off of the

surface were removed 1. The two point clouds (the collection of x, y, z data-points

that define each surface) for each specimen were aligned in a common coordinate

system, mirroring one of the two clouds with respect to the axial direction. Since

the data points do not extend completely to the part edges, an extrapolation was

executed by means of Delaunay triangulation with a nearest point option that uses

the value of the nearest point. Alternatively, a the linear interpolation option could

be used, but in this case it doesn’t work well because it makes a triangulation be-

tween points too far from each other. The data were interpolated in a common grid

in order to average the clouds point by point to provide a single data set and also to

minimize several potential error sources, as better described in [2]. Figure 7.12 shows

the average of the contours measured on the two opposing surfaces created by the

cut for the blank disk C (Figure 7.12(a)) and the indented disk A (Figure 7.12(b))

respectively. The peak-to-valley amplitude of the contour is about 8 µm for the

blank disk C and 40 µm for the indented disk A.

The contour on the unindented disk C was used to correct the contour on the

indented disk A. From Figure 7.12(a) it is evident that the measured contour of

the blank specimen is not flat. Slitting test on the annealed 316L material (see

Section 3.3) indicated that the post-annealing stresses were less than 10 MPa. The

neutron results in the unindented disk C are consistent with these low stresses,

although this low stress is difficult to measure precisely with neutrons. Therefore,

1using the MATLAB function cmm clean.m written by Greg Johnson
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(a) (b)

Figure 7.12 – Measured contour on the cut surface: (a) blank disk C and (b)
indented disk A

the contour on the unindented disk is probably caused by the EDM cutting and not

by residual stress since it would require stresses over 100 MPa to produce such a

contour. As described before, the wire used had half the diameter of the smallest

wire previously used for contour measurements. A lower tension must be used with

smaller wire, and it is affected by vibrational bending. So, to eliminate this effect

in the indented disk, the blank disk contour was subtracted from the indented disk

contour (see Figure 7.13).

Figure 7.13 – Contour of the indented disk A corrected with the contour of the
blank disk C.

In retrospect, since cutting the disks A and C with a 50 µm diameter wire gave
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not very accurate result, the disks B and D were cut with a 100 µm diameter wire

that is the usual size for contour cutting. Figure 7.14 shows the average of the

contours measured on the two opposing surfaces created by the cut with 100 µm

diameter wire for the blank disk D (Figure 7.14(a)) and the indented disk B (Fig-

ure 7.14(b)) respectively. The peak-to-valley amplitude of the contour is about 5 µm

for the blank disk D, but it is only noisy, in fact the average value is zero. Instead,

for the indented disk B the peak-to-valley amplitude is about 40 µm, as for the disk

A.

(a) (b)

Figure 7.14 – Measured contour on the cut surface: (a) blank disk D and (b)
indented disk B.

The σθ stresses that were originally present on the cut plane were calculated

numerically by elastically deforming the cut surface into the opposite shape of con-

tour that was measured at the same surface [1]. This was accomplished using the

ABAQUSr commercial FE code [26] and a 3-D elastic finite element model (see

Figure 7.15(a)). A model of half of the disk specimen was constructed. The mesh

used 51.920 linear hexahedral 8-node elements with reduced integration (C3D8R).

The material behavior was considered elastically isotropic with an elastic modulus of

193 GPa and a Poisson’s ratio of 0.3. In order to smooth out noise in the measured

surface data and to enable evaluation at arbitrary locations, the data were fitted

to a bivariate smoothing spline. The smoothing spline fits were evaluated at a grid

corresponding to the FE nodes, and those values at the nodal locations were then

used as displacement boundary conditions.
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(a) (b)

Figure 7.15 – FE model of 316L disk deformed into opposite of measured shape
in order to calculate original residual stresses: (a) after the first cut and (b) after
the second cut, Deformation magnified by 300.

7.2.2.1 Second cut

After the first, one of the two halves of the indented disk B was cut another time in

two using the same EDM machine and the same condition used for the first cut, as

described before, along a plane normal to the first cut plane (see Figure 7.16).

Figure 7.16 – Indented disk B cut two times along the first cut plane and the
second cut plane respective;y

After cutting, the two quarter of the disk B were removed from the clamping

fixture. The contours of both cut surfaces were measured by the same laser scan

machine and setting used to scan the first cut surfaces (see Subsection 7.2.1). The

specimen was scanned using rows separated by 0.1 mm in the z direction with data

points within a row sampled every 0.05 mm, giving about 63.400 points on each cut

surface.
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The measured contours were processed using the same procedure described in

Subsection 7.2.2. The resultant average contour is shown in Figure 7.17. The peak-

to-valley amplitude is about 10 µm.
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Figure 7.17 – (a) Average contour of the second cut surfaces in the indented disk
B and (b) its spline fit.

As described before, the σθ hoop stresses that were present on the second cut

plane after the execution of the first cut (step B in Figure 2.2) were calculated

numerically by elastically deforming the second cut surface into the opposite shape

of contour that was measured on the same surface. This was accomplished using

half of the 3-D FE model used in the previous analysis (see Figure 7.15(a)) and it is

showed in Figure 7.15(b), by using the removing elements command in the second

step of the previous FE analysis. The same fitting method was used to smooth the

measured surface.

7.2.3 Results

In order to get the optimum amount of smoothing, an uncertainty estimation as the

one described in [2] was carried out. The parameter that determines the amount of

smoothing versus the amount of detail in the fit is the spacing between the knots

in the splines, where the knots are the points where the piecewise polynomials are

joined. The amount of smoothing was objectively chosen by minimizing an estimate

of the uncertainty in the calculated stresses. It was expected that there would be

an optimum amount of smoothing: an overly smooth fit (too coarse knot spacing)

would fail to capture the features in the surfaces, and an overly detailed fit (too fine

knot spacing) would unnecessarily capture noise in the data. Selecting the amount of
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smoothing based on the data fit alone would be simpler because it does not require

multiple FE calculations. However, minimizing uncertainty in the stresses could

only be achieved by calculating the stresses for different data smoothing.

In this case, the approach to determine the optimum spline smoothing involves

incrementally increasing the knot density and calculating the stresses for each in-

crement. First, a single interval bounded by two knots, was used in the shortest

dimension on the diametral section (z-direction). The knots in the ,r, radial direc-

tion are chosen to have an integral number of intervals giving the spacing closest to

that in the z-direction. Using this knot distribution, the stress map is calculated

with the FE model. This process was repeated with refined knot spacing by adding

another interval in the z-direction and a proportional number in the r-direction, and

the stress calculation was repeated with the new data fit. The uncertainty, ∂σ, in

the calculated stresses at a given node was estimated by taking the standard devi-

ation of the new stress and the stress from the previous, coarser fit. This standard

deviation of two values is given by:

∂σ(i, j) =
1√
2
|σ(i, j)− σ(i, j − 1)| (7.1)

The same uncertainty analysis was executed for all the contour method appli-

cations (disk A, B, C and D). Figure 7.18(a) shows the uncertainty estimate in the

calculated stresses and data fit error only for the indented disk A ,for brevity.

Further confidence in selection of the optimal smoothing can be provided by

examining the behavior of the interior extrema in the calculated stress map. Fig-

ure 7.18(b) shows how the peak compressive residual stress in the calculated stress

maps varies with knot number for the indented disk A and B.
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Figure 7.18 – (a)Uncertainty estimate in the calculated stresses and data fit error
and (b) peak compressive stress for the indented disk A.
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7. Experiment: Contour Method

After the uncertainty analysis, it was chosen as optimal smoothing four knot in

z direction for the indented disk A and three for the indented disk B, both first and

second cut contours. It was chosen the knot number corresponding with the elbow of

the RMS error curve and because the uncertainty exhibits a local minimum for that

value. The corresponding smoothed contours were applied as boundary conditions

on the FE model described in the previous section. Figure 7.19(a) and Figure 7.19(b)

show the maps of the residual hoop stresses along the diameter plane for the indented

disk A and the indented disk B respectively.
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Figure 7.19 – Maps of hoop residual stresses measured with the contour method:
(a) on the indented disk A (cut executed with 50 µm diameter tungsten wire); (b)
on the indented disk B (cut executed with 50 µm diameter tungsten wire).

Figure 7.20 shows the the hoop residual stress along the second cut plane, that is

normal to the first cut plane. These stresses are different from the stress measured

on the first cut plane, becasue they are relaxed by the first cut. In order to obtain

the original residual hoop stresses that are present in the disk before the execution

of the first cut, it is needed to combine the this stresses with the stress variation on

the second cut plane already calculated with the first cut contour application. The

detail of this superposition and its results will be described later in Chapter 10.
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Figure 7.20 – Residual stresses σθ in 316L disk B after the second cut (step B=E
in Figure 2.2) measured by the contour method on the second cut plane.

7.2.4 Comparison with FE prediction and Neutron Diffraction

Results

Figure 7.21 compare the hoop residual stresses measured with contour method (CM)

on both disk A and B with the ones measured by neutron diffraction (ND) on

disk A for z = ±1.65 mm, z = ±3.3 mm and z = 0 mm (mid-thickness line)

respectively. The agreement is excellent in spite of the fundamental differences in

the measurement methods. The excellent agreement further confirms the ability of

each method to map residual stresses and also the good repeatability of the contour

method. In fact, the two contour method tests executed in two different indented

disks, gave the same residual stress map, even though for the disk A a contour

correction was needed, because of the 50 µm wire.

Then, there is an excellent agreement of both experimental results, contour and

neutron, with the FE prediction, showed also by Figure 5.5 at pag. 41. So, in order to

serve as an ideal test specimen, the stresses in the indented disk would be calculated

to sufficient accuracy with the FE model and not require independent measurement.
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Figure 7.21 – Hoop residual stresses, σθ, measured with contour method, in both
steel disks A (1) and B (2), and neutron diffraction plotted with the FE prediction
for z = 0 mm (mid-thickness line), for z = ±1.65 mm and for z = ±3.3 mm
respectively.
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7. Experiment: Contour Method

7.3 ALUMINUM 2024-T351 DISKS

In this section it is presented the application of the classical method to a aluminum

2024-T351 disk indented as described in Subsection 3.4.2.

7.3.1 Experiment

The contour method was applied to an indented disks and, as a control, to an

unindented disk. The conventional contour method was applied to measure the

hoop stress over a diametrical cross section.

The disks were cut in half along a diameter plane using the same EDM machine

described before in Subsection 7.2.1. A 100 µm diameter brass wire, and Epak 413,

skim cut 2 for 1/4 in. thick steel settings, and adaptive control were used for these

cutting. Each 60 mm cut took about 3.5 hours. Both disks were cut submerged in

temperature-controlled deionized water throughout the cutting process. The parts

were constrained by clamping on both sides of the cut to the work plate of the EDM

machine (see Figure 7.9), as described before.

After cutting the disks, the contours of the resulting four surfaces of the disk

(indented and not-indented) halves were measured using the same laser machine

(see Subsection 7.2.1) used to scan the 316L stainless steel disks B and D. The cut

surfaces were measured using rows separated by 0.1 mm in the axial direction, z,

with data points within a row sampled every 0.04 mm, giving about 113.000 points

on each cut surface.

7.3.2 Calculation

The raw data was processed using the procedure described in Subsection 7.3.3. Fig-

ure 7.22 shows the average of the contours measured on the two opposing surfaces

created by the cut for the blank disk (Figure 7.22(a)) and the indented disk (Fig-

ure 7.22(b)) respectively. The peak-to-valley amplitude of the contour is about

10 µm for the blank disk and 35 µm for the indented disk. In spite of the low elastic

modulus of the aluminum, the contour is even smaller than the steel one, in term of

peak-to-valley amplitude.

The σθ stresses that were originally present on the cut plane were calculated nu-

merically by elastically deforming the cut surface into the opposite shape of contour

that was measured at the same surface as described before (see Subsection 7.3.3).

This was accomplished using the same 3-D elastic finite element model used before

(see Figure 7.15(a)). The material behavior was considered elastically isotropic with

an elastic modulus of 73.2 GPa and a Poisson’s ratio of 0.33. Then the data were
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7. Experiment: Contour Method

(a) (b)

Figure 7.22 – Measured contour on the cut surface for the AA2024-T351: (a)
blank disk; (b) indented disk.

fitted using the same approach as before and were evaluated at a grid correspond-

ing to the FE nodes, and those values at the nodal locations were then used as

displacement boundary conditions.

7.3.3 Result

The same uncertainty analysis described before was executed (see Subsection 7.2.3).

It was chosen as optimal smoothing three knots in z-direction for the indented disk.

The corresponding smoothed contour was applied as boundary conditions on the FE

model described in the previous section. Figure 7.23 shows the map of the residual

hoop stresses along the diameter plane for the aluminum 2024-T351 indented disk.
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Figure 7.23 – Maps of hoop residual stresses measured with the contour method
on the AA 2024-T351 indented disk.

Figure 7.24 shows the comparison between hoop stress measured with the con-

tour method for z = 0 mm (mid-thickness line) compared with the FE prediction.
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7. Experiment: Contour Method

The trends of the measured and predicted stress are pretty similar, but there is a

difference up to 75 MPa in the peak compressive stress on the center of the disk. The

FE prediction is not very accurate. Since the hardening model was calibrated on

the experimental curves of the in-plane directions, probably the hardening behavior

in the through-thickness direction affects the residual stress distribution.

−30 −20 −10 0 10 20 30

−200

−150

−100

−50

0

50

100

150
At z=0 mm (midplane)

Position, r (mm)

R
es

id
u

al
 s

tr
es

s,
 σ

θ (
M

P
a)

 

 
FE prediction

Contour method

Figure 7.24 – Hoop residual stresses, σθ, measured with contour method in the
aluminum 2024-T351 plotted with the FE prediction for z = 0 mm (mid-thickness
line).
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Chapter 8

Experiment: X-ray Diffraction

In order to validate the surface superposition principle the remaining in-plane stresses

on the cut surface were measured after the application of the contour method on

the 316L stainless steel disk, by means of a X-ray diffraction technique. But un-

fortunately this test was not successful because of the big grain size of the steel

used.

8.1 PRINCIPLE OF X-RAY STRESS MEASUREMENT

When a monochromatic X-ray beam irradiates a solid material, it is scattered by

the atoms composing the material. For a perfect crystalline material, atoms are

packed regularly into a three-dimensional periodic lattice. The distance between

crystallographic planes is perfectly defined and it is a characteristic of a material

in a given environment. Because of the regular distribution of atoms, the scattered

waves lead to interferences similar to visible light diffraction by an optical diffraction

pattern. The intensities of scattered waves sum up into a constructive interference

when the condition

2d sin Θ = nλ (8.1)

is fulfilled (see Figure 8.1), where d is the distance between diffracting lattice planes,

Θ is the angle between the incident beam and the diffracting planes, λ is the X-ray

wavelength and n is an integer. If this condition, called Bragg’s Law, is fulfilled,

the diffracted beam and the incident beam are symmetrical in relation to the lattice

planes normal. As can be seen in Figure 8.1, an infinity of crystallographic planes can

be defined, however, for physical reasons, only several of them lead to a diffraction

pattern with a detectable intensity.

When an X-ray beam irradiates the surface of a crystalline material, it is con-

structively scattered only if it meets lattice planes oriented to fulfill Bragg’s law. If
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8. Experiment: X-ray Diffraction

θ θ
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Figure 8.1 – Bragg’s Law – X-ray diffraction can be observed in θ-direction if
nλ = 2d sin Θ.

the material is composed of many grains (crystallites) randomly oriented, there is

always a group of them suitably oriented to produce a diffracted beam. Because of

the random distribution of crystallites has a rotational symmetry, several cones of

diffracted beams with the incident beam as the axis can be observed, each of them

corresponding to a specific lattice plane. Diffraction cones can also be observed but

only on one side (back scattering pattern) because the specimen is massive and the

penetration depth of X-rays usually used do not exceed 30 or 40 µm. The summit

angles of these cones are:

αi = π − 2Θi (8.2)

where Θi are the diffraction angles related to the lattice spacing d through the

Bragg’s law. if these angles can be measured by an appropriate device, it is then

possible to know the lattice spacing d of the analyzed crystallographic planes. This

is only a brief introduction to diffraction phenomena and extensive information on

theoretical and experimental aspect can be found in [45,46,47,48,49,50].

In a polycrystalline (metal or ceramic) part, with fine grain and stress-free, the

lattice spacing d0 for a given plane family does not vary with the orientation of these

planes. If the specimen is stressed, due to elastic deformation, the lattice spacing

varies according to the orientation of planes relatively to the stress direction. If a

tensile stress is applied, the lattice spacing will increase for planes perpendicular to

the stress direction and decrease for planes parallel to the stress direction (due to

Poisson’s ratio effect). The elastic strain of the crystal lattice can be inferred from

the variation of the lattice spacing d−d0, measured by the position of the diffraction

peak (Bragg’s law):
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8. Experiment: X-ray Diffraction

ε =
d− d0

d0

(8.3)

Thus, the crystal lattice (crystallographic planes) is used as a strain gage which

can be read by diffraction experiments. As in any extensometric method, the stress

can be calculated from strains measured in several directions and the elasticity

constants of the material.

A diffraction peak is the result of X-rays scattering by many atoms in many

grains, so a change in the lattice spacing will result in a peak shift only if it is

homogeneous over all these atoms and grains, i.e., over all the irradiated volume.

Thus, the strain determined from peak shift measurement is representative of a

macroscopic elastic strain (applied or residual). On the other hand, all the crystal

defects (dislocations, vacancies, stacking faults etc.) lead to a local fluctuation of

the lattice spacing which results in a peak broadening.

8.2 EXPERIMENTS

X-ray diffraction (XRD) measurements were made using two types of goniometers

at the High Temperature Materials Laboratory, Oak Ridge National Laboratory.

Table 8.1 lists the details of the experimental conditions for the x-ray measurements

using the first unit. Briefly, a 4-axis (φ, χ, Ω, 2Θ) goniometer [51] was employed for

the stress measurements using the ”ψ-goniometer geometry” (see Figure 8.3(a)) [49].

The (220) and (311) reflections from the 316L austenitic steel were utilized for the

strain measurement along the length of the samples using Cr Kα and Kβ radiations,

respectively. Measurements were restricted to a 4 × 4 mm area by using Pb tape

for masking. Given the large grain size (50-100 µm), rocking scans were performed

at each nominal tilt to locate four low intensity regions; that is, sample orientations

where there is minimal contribution to the intensity from a large grain or grains.

The detector scans were then performed at fixed φ, ψ(= χ) and Ω. Additional scans

were made at each of the nominal ψ values, i.e., ψ at ±0.2◦ for a total of twelve

scans per nominal ψ.

Specimen alignment was accomplished using a dial gauge probe which was accu-

rate to ±5 µm. Here, the relative distance to the center of rotation is known, and

the diffracting surface is positioned accordingly. Goniometer alignment was ensured

by examining LaB6 powder on a zero background plate. The maximum observed

peak shift for the (510) reflection of LaB6 (141.7◦ 2Θ) was less than 0.01◦2Θ for Ψ

tilting as described in Table 8.1.

The stresses were calculated using the Dölle-Hauk method [49], assuming a bi-
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(a) (b)

Figure 8.2 – (a) ψ-goniometer geometry and (b) Ω-goniometer geometry for resid-
ual stress measurements.

axial stress state. For this stress state, the equation relating strain to stresses is:

εφψ =
dφψ − d0

d0

=
1 + ν

E
σφ sin2 ψ − ν

E
(σ11 + σ22) (8.4)

assuming σ13 = σ23 = σ33 = φ = 0. ε, d, ν, E and are the strain, interplanar

spacing, Poisson’s ratio, Young’s modulus and stress, respectively. Poisson’s ratio

and Young’s modulus were taken as 0.3 and 193 GPa, respectively. The variables

Table 8.1 – Experimental conditions of the x-ray measurements 4-axis (φ, χ, Ω,
2Θ) goniometer.

Parameter Condition
Equipment Scintag PTS goniometer Spellman DF3 series 4.0

kW generator Scintag liquid N2-cooled Ge detector
Power 1.44 kW; 40 kV, 36 mA
Radiation Cr, λ Kα = 2.28970 Å, Kβ = 2.08487 Å
Incidence slit divergence 0.24◦

Receiving slit acceptance 0.25◦; radial divergence limiting (RDL) Soller slit
Source to specimen distance 290 mm
Specimen to back slit dis-
tance

290 mm

Mask and mapping locations 4× 4 mm Pb mask, R=0 and 25 mm
Tilt axis and nominal tilt an-
gles

Ω; 0◦, ±28.2◦, ±42◦, ±55◦ (equal steps of sin2 Ψ)

Scans 0.02◦2Θ/step
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(a) (b)

Figure 8.3 – (a) ψ-goniometer geometry and (b) Ω-goniometer geometry for resid-
ual stress measurements.

and subscripts φ, ψ and 0 refer to the azimuthal angle, tilt angle and strain-free,

respectively. dψ=0 was taken as the strain free interplanar spacing, d0.

Table 8.2 lists the details of the experimental conditions for the x-ray measure-

ments on a second unit. Briefly, a single axis (ψ) goniometer [52] was employed for

the stress measurements using the ”Ω-goniometer geometry” (see Figure 8.3(b)) [49].

The (311) reflection from the austenitic steel was utilized for the strain measure-

ments. During scanning, the axis was oscillated ±4◦ to improve particle statistics.

Specimen alignment was accomplished using a contact probe which was accurate to

±0.25 mm. Goniometer alignment was ensured by examining a stress-free Fe powder

pellet. The maximum observed peak shift for the (211) reflection of Fe (156◦ 2Θ)

was less than 0.06◦ 2Θ for tilting as described in Table 8.2.

This data was analyzed with the RSA software [53], and the stresses were also

calculated using the ”sin2 ψ” technique [49].

A typical peak profile of the 316L disk contained peaks from two or more grains

or sets of grains (see Figure 8.4(a)). The blue and green curves in Figure 8.4(a) show

the presence of two peaks for different 2θ). In an effort to avoid such peaks, the

available diffracting grains were prescreened via the rocking curves described above.

Scans from a particular Ω orientation and nominal ψ were then averaged and profile

fit, reducing the 12 scans to four profile fit peak positions per nominal ψ. Any scans

revealing any obvious ”multi-grain” nature, as shown below, were excluded. The

resulting ε versus sin2 ψ is shown in Figure 8.4(b). Despite our best efforts to average

and minimize the influence of the large grains (see Figure 3.3), this typical sin2 ψ

plot shows lots of scatter due to interaction strains or elastic incompatibility strains

72



8. Experiment: X-ray Diffraction

Table 8.2 – Experimental conditions of the x-ray measurements 4-axis (φ, χ, Ω,
2Θ) goniometer.

Parameter Condition
Equipment TEC Model 1600 x-ray stress analyzer Position

sensitive detector (PSD), 14◦ 2Θ range
Power 52.5 kW; 35 kV, 0.75 mA
Radiation Cr, λ Kβ = 2.08487 Å
Source to specimen distance 220 mm
Specimen to back slit dis-
tance

220 mm

Collimator 5 mm diameter
Mask and mapping locations 4×4 mm Pb mask, R=0 and 25 mm
Tilt axis and angles Ω; ψ-value varied ±40◦ in equal steps of sin2 Ψ)
Scans 0.06◦2Θ/step from 142-156◦2Θ; 180 sec/scan

between grains. While each individual strain measurement is valid and correct, the

heterogeneity displayed indicates that it is not prudent to force the x-ray residual

stress analysis further.

(a) (b)

Figure 8.4 – (a) Typical (311) profile and (b) typical ε vs sin2 ψ.
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Chapter 9

Experiment: ESPI Hole-drilling

In order to validate the surface superposition principle the remaining in-plane stresses

on the cut surface were measured after the application of the contour method on

the 316L stainless steel disk and the aluminum 2024-T351, by means of the ESPI

hole drilling method.

9.1 INTRODUCTION TO ESPI HOLE DRILLING

The hole drilling technique for residual stress measurement was introduced in 1933

by Mathar [54], and is a common technique used today. It is by definition a destruc-

tive method, not because it necessarily destroys the part by drilling the hole, but

because it removes material, therefore destroying the stress support.

In the hole drilling method, a specific amount of material is removed, and the

resulting measured deformation (or strain) is used to determine the average stress.

Extensions of this technique allow to drill the hole in several increments, thereby

obtaining some information about the stress as a function of depth; these techniques

are standardized in ASTM 837 [55]. The standard drilling method is to use an air

turbine with speeds from 20-60.000 rpm, using bits of the order of 1.6 mm diameter.

Other techniques for removing the material include particle erosion, laser annealing

or scratching. The standard method for measuring the relieved strain is to use

a strain gage. In the mid 1980s, Antonov [56] and McDonach [57] showed that

optical techniques could be used for surface displacement measurements around

drilled holes. In the mid-90s, Nelson [58] detailed his earlier results, and gave a

general theory for capturing a deformation map using holographic interferometry.

Another technique to measure the surface displacement produced by the hole drilling

is to use ESPI to collect full field of view data and store it electronically, so the data

analysis can be performed by a computer algorithm [59,60]. This process is rapid and

can provide some statistics to help quantify the accuracy of the answer. In addition

to a rapid, automated algorithm for deformation data acquisition and residual stress
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9. Experiment: ESPI Hole-drilling

calculation, a system has been developed that incorporates software for controlling

the drilling equipment, resulting in a fully integrated residual stress measurement

system, which is fully described by Steinzig et ali [61,62,63,64].

Electronic speckle pattern interferometry (ESPI) can produce data about dis-

placements (shape changes) at the surface of an object by mathematically combin-

ing interferograms registered digitally before and after the deformation occurs. In a

single beam ESPI system the object is illuminated with coherent light (a green laser

in our case) and viewed by a CCD camera through a lens system and a prism that

interferes the object light with a reference beam from the laser source (Figure 9.1).
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Figure 9.1 – Schematic diagram of the ESPI setup (reproduced from Steinzig and
Ponslet [61])

The interference image is recorded by the CCD camera and stored in a computer

for processing. A raw image by itself does not contain useful information, but

rather exhibits a random-looking pattern of light and dark speckles, caused by the

roughness of the sample and the optics, as shown in the first 8 images of Figure 9.2.

To obtain quantitative information, images taken before and after a deformation

event are stored in a computer and processed. There are several techniques available

to perform this processing. In this case it is used a technique known as a four-bucket

phase-stepped algorithm. It requires two sets of four images each. One set is taken
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9. Experiment: ESPI Hole-drilling

before the object is deformed (reference set), the other is taken after the deformation

has occurred (deformed set). Within each set, the reference phase (reference beam)

is stepped by a 1/4 wave (90 degrees) between one image and the next. This can

be achieved in a number of ways. The system described here uses a small mirror

bonded to a piezoelectric actuator and driven by electronic circuitry synchronized

with the frame grabbing hardware.

Figure 9.2 – Set of four pre-hole and four post-hole raw images and the resulting
phase (wrapped) and displacement (unwrapped)maps; the black disk shows the
location of the hole.

Once acquired, the reference set and the deformed set are used to calculate a

phase image of the surface displacement projected along the sensitivity vector of

the system. The phase image will generally exhibit a number of discontinuities

resulting from the arc-tangent operation used in calculating the phase angle. These

discontinuities can be removed using phase-unwrapping algorithms, for which a good

source is the book by Ghiglia and Pritt [65].

The ESPI technique is well documented elsewhere [66,67,68,69] and will be only

briefly summarized here. Figure 9.1 schematically shows a typical ESPI setup. The

light from a laser source is split using a half-silvered mirror. One part passes through

a piezoelectric actuator to provide a phase-stepped reference light to a CCD camera.

The other part of the laser light (the illumination beam) is used to illuminate the
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9. Experiment: ESPI Hole-drilling

specimen, which is imaged (the object beam) through a zoom lens onto the CCD.

The object beam interferes with the reference light to produce a speckle pattern on

the CCD, the local phase of which varies with displacement of the specimen surface.

By taking a series of phase-stepped images before and after surface deformation,

it is possible to evaluate both the size and sign of the deformation at every pixel

in the CCD image. The data at each pixel correspond to the component of the

three-dimensional surface deformation in the direction of the sensitivity vector. This

vector bisects the directions of the illumination and object beams. In the present

application, the image contains the area around the drilled hole, and the measured

deformations are those caused by hole drilling.

After processing the light intensity data from the CCD, the ESPI system returns

a pixel map of the surface displacements along the sensitivity direction. The rest

of the analysis consists of a least square fit of a linear combination of the uniaxial

stress cases obtained from FE calculation [62] with the experimental data. Then

the portion of the data covering the hole and an annular region around the hole is

removed because that data have been corrupted by the drilling operation. Although

the deformations are largest near the hole, we have found that the FFLSQ technique

has inherently low sensitivity to noise so that masking large regions of high amplitude

data has little effect on the final result.

Next, the code generates three basis functions for the particular h/D value of

the test from the polynomial expansions available in the database (see [62]). This

results in three maps of 3D data (x, y, and z deformation for each of the three

uniaxial states of stress σx0, σy0 and τxy0). The code then calculates the sensitivity

direction of the actual test based on user-provided configuration data and projects

the numerical displacement maps onto that direction. This reduces the amount of

FE data to three square grid maps (one for each uniaxial state of stress) of 1-D data

(deformation along the test sensitivity direction).

Those data are then scaled and interpolated onto the pixel grid that corresponds

to the test data. The adjustments for hole diameter and Youngs modulus are then

made [62]. This results in three projected displacement pixel maps of model data,

one for each uniaxial stress case.

Finally, those data are arranged into least squares fit (or pseudo-inverse) formu-

lation, which is solved to provide the best fit of stress components. Without rigid

body correction (see Section [62]), the least squares calculation requires the pseudo-

inversion of a system of up to 307.000 equations (640 × 480) with three unknowns

(σx, σy and τxy). In practice however, with a 640 × 480 pixel image and a 200%

mask around the hole, the size of the system is typically around 240.000 by 3.
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9. Experiment: ESPI Hole-drilling

9.2 EXPERIMENTS AND RESULTS

In order to measure the in-plane remaining radial and axial stresses, on the cut

surface, i.e. relaxed by the execution of the cut, several ESPI hole drilling tests

were executed on the 316L stainless steel and aluminum 2024-T351 indented and

unindent disk halves using the the PRISM-RS system (see Figure 9.3) described by

Steinzig and Ponslet [63] at the Hytec Incorporated, Los Alamos, New Mexico [70]

. The cut surfaces of the disks were previously electro-polished in order to remove

the EDM-affected layer of material where high residual stress are present.

Figure 9.3 – PRISM-RS setup: illumination beam, CCD camera, drill, disk and
clamp.

The system was set up to make measurements in the half disk cut surface along

the mid-thickness line. The drilling and holography systems remained stationary

during these tests, and the sample was translated in a clamping fixture. Using this

setup, 9 measurements were made in the 316L stainless steel indented disk which

distance from each other was of 6 mm along the mid-thickness line, using a 1.59 mm

(1/16”) diameter drill bit in four increments of 0.1 mm till a final depth of 0.4 mm.

The first 4 holes, for r > 0 mm, where executed at a rotational speed of 30.000 rpm

, while for the last 5 holes, for r ≤ 0 mm, the rotational speed was 15.000 rpm.

The residual stress were evaluated using the incremental hole analysis [71,72]

adapted for to the ESPI hole drilling.

Figure 9.4(a) and 9.4(b) show the radial and axial stresses respectively along

the mid-thickness line plotted for each analysis increments. These stress values

are not the average stresses over the incremental depth but they come from the

incremental analysis. The figures show also for comparison the FE prediction of
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9. Experiment: ESPI Hole-drilling

these stresses after the relaxation caused by the cut. The first increment stresses

are very high because the 0.1 mm layer is still affected by the EDM stresses or

by the drilling process or by the surface resulting from the electro-polish. Instead

the second increment (0.2 mm) and the others pretty similar to each other and

very close to the FE prediction but only for r ≤ 0 mm, i.e. the holes executed at

15.000 rpm. Subsequent measurements executed on the electro-polished cut surface

of the unindented disk showed accurate and repeatable results using 15.000 rpm and

a 0.05 mm/s feed rate. So, the previous measurements erroneously executed using

30.000 rpm were not considered for the subsequent surface superposition verification

presented in the Chapter 11.
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Figure 9.4 – Measured (a) radial and (b) axial stresses in the 316L indented half
disk along the mid-thickness line for every increments together with the FE predic-
tion.

Then, using the same experimental setup, several measurements were executed

on the electro-polished cut surface of the aluminum 2024-T351 indented half disk.

In detail, 9 holes were executed along the mid-thickness line every 6 mm in the same

conditions (rotational speed, drill diameter, etc.). Further 10 measurements were

executed in between the previous executed holes using a smaller drill bit (0.79 mm

or 1/32”) and rotational speed of 10.000 rpm, instead increments and final depth

were the same as before.

Figure 9.5(a) shows the radial stresses along the mid-thickness line plotted for

each increments for 1.59 mm hole diameter measurements and Figure 9.6 for 0.79 mm

hole diameter ones, and Figure 9.6(a) and 9.6(b) show the axial residual stress for

the two different hole diameter measurements respectively, plotted together with

the FE prediction. The measured stresses for both set of measurements are very

low and there is no much difference between each increments. Further the difference
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9. Experiment: ESPI Hole-drilling

between the measurements executed using different drill diameter are low.
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Figure 9.5 – Measured radial stresses (a) with 1.59 mm drill and (b) with 0.79 mm
drill in the aluminum 2024-T351 indented half disk along the mid-thickness line
plotted for every increments.
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Figure 9.6 – Measured axial stresses (a) with 1.59 mm drill and (b) with 0.79 mm
drill in the aluminum 2024-T351 indented half disk along the mid-thickness line
plotted for every increments.
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Chapter 10

Results: Multiple Cuts

In this section it will be presented the application of the multiple cut theory to the

HSLA-100 quenched plate and to the 316L indented disk, which contour method

applications were described in Section 7.1 and 7.2 respectively.

10.1 RECONSTRUCTION

The multiple cut theory, as described in Section 2.1, allows the contour method to

measure multiple stress components by executing multiple cuts. First, the contour

method is applied to a part by cutting it in two, in order to measure the residual

stress normal to the cut surface. Then, the contour method is applied another

time one of the two halves by cutting it in two along a plane perpendicular to the

first cut plane. In this way the residual stresses normal to the second cut plane

and relaxed by the execution of the first cut can measured. In order to obtain the

original residual stresses (before the execution of the first cut) normal to second cut

plane the multiple cut theory will be applied. By simply superimposing the stresses

obtained from the application of the contour method to the second cut plane (step

E in Figure 2.2 at page 11) with the change of the same stress component obtained

from the application of the contour method to the first cut plane (step C in Figure 2.2

at page 11), it is possible to obtain the original residual stress (before the execution

of the first cut) in the second cut plane.

In the following subsection this reconstruction theory will be applied to the

HSLA-100 quenched plate and to the 316L stainless steel indented disk, which ap-

plications of the contour method to the two cut plane were described in Chapter 7.

10.1.1 HSLA-100 quenched plate

In Figure 10.1 it is showed the reconstruction process of the σz on the second cut

plane of the HSLA-100 quenched plate. Figure 10.1(a) shows the change of σz ob-
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10. Results: Multiple Cuts

tained after the first step of the FE analysis, described in Section 7.1. Figure 10.1(b)

(step C in Figure 2.2) shows the σz residual stresses on the second cut plane from

Figure 7.1 after the second step of FE analysis (step B=E in Figure 2.2). This stress

map is very similar to the previous map (Figure 7.7), but in the left edge the effect

of the first cut is evident (the right edge shows the effect or the original removal of

the test specimen from a large quenched plate).
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Figure 10.1 – Residual stresses in HSLA-100 specimen measured by the multi-
component contour method on the second cut plane using the result from the first
cut: (a) change of σz after the first cut (step C in Figure 2.2); (b) σz after the second
cut (step B=E in Figure 2.2), and (c) reconstructed original σz residual stresses (step
A=B+C in Figure 2.2).

82



10. Results: Multiple Cuts

By superimpose the change of the stresses in Figure 7.8(a) with the σz in Fig-

ure 10.1(b), the reconstructed original σz residual stress map is obtained on the

second cut plane shown in Figure 10.1(c) (step A=B+C in Figure 2.2). Based on

the left side of the results, it appears that the reconstruction has removed the effect

of the first cut. By comparing the maps of σx in Figure 7.7 at page 53 with the

one of σz in Figure 10.1(c), the approximately biaxial residual stress field typical of

quenched plate is evident.

The reconstruction process is further illustrated by examining the stresses on

the edge of the second cut where the stresses were most affected by the first cut.

Figure 10.2 shows the through-thickness variation of σx for z =76.2 mm in Figure 7.7

at page 53 and of the σz stresses on the left edge of Figure 10.1, that correspond to

the common line of the two cut planes (line a− b in Figure 7.1). This Figure shows

that the contributions of the σz stresses calculated in step C and E to reconstruct

the original σz stresses are approximately of the same size in this case. Further, it is

also evident that the profile of the original residual stress σx and σz are very similar,

how it is expected for a quenched plate. The difference between these stresses is

about less than 40 MPa along the though-thickness direction, except of the right

edge (y =60.75 mm) where the difference is about 80 MPa. Because this line is the

edge of the second cut, contour method stresses are expected to be less accurate

there because the assumption of a flat cut is not perfect on the edge. This explains

some of the difference. Also, error accumulation from the two cuts would indicate

that uncertainties should be larger for reconstructed stresses.
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Figure 10.2 – Through-thickness variation along the line a-b in Figure 7.1 of σx
and σz residual stresses in HSLA-100 specimen.
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10. Results: Multiple Cuts

10.1.2 316L stainless steel disk

In Figure 10.3 it is showed the reconstruction process of the σθ on the second cut

plane of the 316L stainless steel indented disk B. Figure 10.3(a) shows the change of

σθ obtained after the first step of the FE analysis for the indented disk B, described

in Section 7.2 (step C in Figure 2.2). Figure 10.3(b) shows the σθ residual stresses

on the second cut plane of the indented disk B from Figure 7.16 after the second

step of FE analysis (step B=E in Figure 2.2). This stress map is very different to

the map of the residual hoop stress on the first cut plane for both indented disk A

and B, (see Figure 7.19).

By superimpose the change of the σθ stresses in Figure 10.3(a) with the σθ in

Figure 10.3(b), the reconstructed original σθ residual stress map is obtained on the

second cut plane and showed in Figure 10.3(c) (step A=B+C in Figure 2.2). Based

on the left side of the results, it appears that the reconstruction has removed the

effect of the first cut. By comparing the maps of σθ in Figure 10.3(c) with the

one in Figure 7.19 at page 62 and considering that the second cut plane has only

half width of the first, it is evident that the agreement is excellent. In particular

the reconstructed stress are very similar to the left half of both stress maps in

Figure 7.19.

The reconstruction process is further illustrated in Figure 10.4(a) by examining

the stresses along the mid-thickness line on the second cut plane. The black line

represents the σθ hoop stresses on the second cut plane obtained from the first FE

calculation, described in Subsection 7.2.2. The red line represents σθ hoop stresses

on the second cut plane obtained from the second FE calculation, that are affected

by the execution of the first cut. Then, the blue line is the original σθ hoop stresses

(before the execution of the first cut) on the second cut plane reconstructed by

simply adding the previous two curves. The major contribution to the reconstructed

stresses is given by black line, i.e. the first cut FE calculation, in contrast to the case

of the HSLA-100 quenched plate where the contributions to reconstruction were of

the same size.

Figure 10.4(b) shows the comparison of the reconstructed hoop stresses on the

second cut plane (blue line) with the σθ hoop stress on the first cut plane, obtained

with the traditional contour method analysis on the first cut (red line), the FE pre-

diction (black line) and the neutron diffraction measurement (green line). Since the

residual stress field produced by the indentation process should be axi-symmetric,

the reconstructed stresses should be close to the stress measured with the contour

method on the first cut plane and also to the FE prediction and neutron diffraction

measurements. The agreement of the reconstructed stresses with the FE prediction
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Figure 10.3 – Residual stresses in 316L stainless steel disk measured by the multi-
component contour method on the second cut plane using the result from the first
cut: (a) change of σθ after the first cut (step C in Figure 2.2); (b) σθ after the second
cut (step B=E in Figure 2.2), and (c) reconstructed original σθ residual stresses (step
A=B+C in Figure 2.2).

and the contour method result on the first cut plane is excellent with difference

between these stresses less than 30 MPa.

10.2 DISCUSSION

As presented, the multiple stress components contour method measures the stress

components normal to multiple cut surfaces, which is fine for many measurement

applications because the normal stresses are often the largest and the main contrib-
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Figure 10.4 – Variation along the mid-thickness line on the second cut plane of σθ
residual stresses in 316L stainless steel disk: (a) reconstruction process of and (b)
comparison with FE prediction and contour method.

utors to failure.

The experimental results of for the HSLA-100 quenched plate and the 316L stain-

less steel disk convincingly demonstrate the effectiveness of the simple process to

reconstruct the original residual stresses on the plane of the second cut. For the

HSLA-100 quenched plate, the difference between the original σx and σz residual

stresses in the region where the first cut affected the stresses for the second but are

very low after reconstruction, confirming the typical biaxial quenching stress. Some

difference between the σx and σz residual stresses could be caused by different ma-

terial properties along the x and z directions, in fact the yield stress is respectively

690 MPa and 685 MPa along the x and z direction. For the 316L stainless steel disk,

the difference between the reconstructed stresses and the contour method result on

the first cut plane are very low, less than 30 MPa, confirming the axi-symmetric

stress distribution produced by the indentation process. Further, both stress profile

are very close to the FE prediction and neutron diffraction measurements demon-

strating the validity of the multiple component contour method and one more time

of the conventional contour method.

Some of the HSLA-100 quenched plate results would have been better if a better

arrangement was used to clamp the part during the EDM cutting. In both Figure 7.7

and Figure 7.8, the right of the figure corresponds to the end of the EDM cut, which

started on the left of each figure. The stress gradients at the right side of those

figures are a result of the part moving during the end of the cut and changing the

cutting path. These experiments were performed some time ago, and the clamping

arrangement in Figure 7.2 is no longer used. In that figure, the clamping direction is
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10. Results: Multiple Cuts

the same as the cutting direction. Now, the clamping direction is the same direction

as the wire axis, which is vertical in Figure 7.2. This has proven to provide better

clamping and good data all the way to the end of the cut.
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Chapter 11

Results: Surface Superposition

In this section it will be presented the application of the surface superposition theory

to the 316L stainless steel indented disk and the aluminum 2024-T351 one, which

contour method applications were described in Section 7.2 and the ESPI hole drilling

application was described in Chapter 9.

11.1 RECONSTRUCTION

The surface superposition theory, as described in Section 2.3, allows the contour

method to measure multiple stress components by using a different measurement

technique. First, the contour method is applied to a part by cutting it in two. Then,

the remaining in-plane residual stresses on the cut plane are measured by means of

a technique that is able to measure the residual stresses close to the surface as

the x-ray diffraction, hole drilling method, ESPI hole drilling etc. then, by simply

superimposing the stresses measured with the surface technique (step B in Figure 2.2

with the change of the same stress component obtained from the application of the

contour method (step C in Figure 2.2 at page 11), it is possible to obtain the other

residual stress components in the cut plane.

First, an x-ray diffraction test was executed, described in Chapter 8, in order to

measure in the 316L stainless steel indented disk the in-plane remaining stresses on

the cut surface, after electro-polishing the surface to remove the EDM affected layer.

But unfortunately the experiment was not successful because the material exhibited

a big grain size and the presence of different grain size sets. So the diffracted pattern

had many peaks making difficult the resolution.

Subsequently, the remaining stresses were successfully measured using ESPI hole

drilling on the 316L stainless steel indented disk and on the aluminum 2024-T351

one, which experiments were described in Chapter 9.

In the following subsection this surface superposition theory will be applied to

the 316L stainless steel indented disk, which applications of the contour method
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11. Results: Surface Superposition

were described in Chapter 7.

11.1.1 316L stainless steel disk

Figure 11.1 shows the application of the surface superposition theory to 316L stain-

less steel indented disk B. In detail, Figure 11.1(a) show the reconstruction process

for the radial stresses and Figure 11.1(b) for the axial stresses. The red line is the

change of σr obtained after the FE analysis for the indented disk B, described in

Section 7.2 (step C in Figure 2.2). The blue line is the σr residual stresses on the

cut plane of the indented disk B measured by ESPI hole drilling. By superimposing

those stresses the reconstructed original σr residual stresses are obtained on the cut

plane and plotted with a green line (step A=B+C in Figure 2.2). For comparison,

Figure 11.1 shows also the FE prediction of the σr residual stress on the same lo-

cation of the measurements. As described in Section 9.2 it was considered only the

measurements executed at 15.000 rpm.

−30 −20 −10 0 10 20 30

−250

−200

−150

−100

−50

0

50

100

150
At z=0 mm (midplane)

Position, r (mm)

R
es

id
u

al
 s

tr
es

s,
 σ

r (
M

P
a)

 

 
Contour method
ESPI hole drilling
Reconstruction
FEM prediction

(a)

−30 −20 −10 0 10 20 30

−250

−200

−150

−100

−50

0

50

100

150
At z=0 mm (midplane)

Position, r (mm)

R
es

id
u

al
 s

tr
es

s,
 σ

z (
M

P
a)

 

 

Contour method

ESPI hole drilling

Reconstruction

FEM prediction

(b)

Figure 11.1 – Surface superposition theory application to the 316L stainless steel
indented disk: (a) σr radial stress and (b) σz axial stress, where red line is the change
of stresses after the cut (step C in Figure 2.2) measured with contour method; the
blue lines the remaining stresses after the cut (step B in Figure 2.2) measured with
ESPI hole drilling, and green lines the reconstructed original residual stresses (step
A=B+C in Figure 2.2). The black lines are the FE prediction.

Furthermore, Figure 11.2 shows the comparison between the reconstructed stresses,

the FE prediction and the neutron diffraction results for the radial and axial stress

components respectively. The agreement between the neutron diffraction, recon-

structed stress and FE prediction is excellent confirming the effectiveness of the

surface superposition principle.
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Figure 11.2 – Comparison between reconstructed stresses, FE prediction and neu-
tron diffraction result for (a) radial and (b) axial stress components.

11.1.2 Aluminum 2024-T351 disk

As described above the same superposition was applied to the aluminium 2024-

T351 indented disk and showed in Figure 11.3. In detail, Figure 11.3(a) show the

reconstruction process for the radial stresses and Figure 11.3(b) for the axial stresses.

The ESPI hole drilling result, as described in Chapter 9, were executed with two

different drill diameter (1/16” and 1/32”).
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Figure 11.3 – Surface superposition theory application to the aluminum 2024-T351
indented disk: (a) σr radial stress and (b) σz axial stress, where red line is the change
of stresses after the cut (step C in Figure 2.2) measured with contour method; the
blue lines the remaining stresses after the cut (step B in Figure 2.2) measured with
ESPI hole drilling, and green lines the reconstructed original residual stresses (step
A=B+C in Figure 2.2). The black lines are the FE prediction.
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11. Results: Surface Superposition

11.2 DISCUSSION

The surface superposition results obtained for the 316L stainless steel disk are rea-

sonable and the reconstructed stresses are in good agreement with the FE prediction,

particularly for the axial stress component. Even if the results were only obtained

for half of the mid-thickness line, because for the other half a wrong rotational speed

of the drill was used, the experimental tests validate the theory.

For the aluminium disk the results are even better. They are quite symmetric

to the disk axis and they have the same trend as the FE prediction. There are

bout 50 MPa of difference between the lowest reconstructed radial stress and the

correspondent FE predicted stress. These difference are probably caused by some

difference in the hardening behavior between the in-plane, that was modeled, and

the through-thickness direction of the aluminum plate.

A specimen with higher magnitude stresses might provide a more convincing

validation of this theory and should be attempted in the future. However, higher

stress specimens such as welds are difficult to model. Therefore, the validation would

have to come from independent measurements.
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Chapter 12

Conclusion

In this thesis two new theoretical developments of the contour method that allow

to measure multiple residual stress components are presented.

By making multiple cuts, the multiple cut theory measure the residual stresses

normal to these cut planes. FE calculation were executed in order to validate this

theory. These calculation further demonstrate the effectiveness of the theory in case

of absence of shear stresses on the first cut plane. Instead in the case of presence

of shear stresses on the first cut plane, the reconstructed stresses on the second cut

plane are affected by errors of about 6% of the peak stress for the test case examined.

The surface superposition theory allow to measure multiple stress components

by using different techniques. It has been numerically validate by means of the

same FE calculation used for the multiple cut theory validation. The theory gave

correct result in case of no shear stresses on the plane of the cut. Instead, in case

of shear stresses on the cut plane the reconstructed stresses obtained using surface

stresses measured on only one of the halves can be very different from the original

residual stress. But, by averaging the surface stresses measured on the two halves

of the part (step B) and then superimposing with the change of the same stress

components (step C) the correct reconstructed stresses are obtained. Therefore, if

shear stresses might be present on the cut plane, the surface stresses after the cut

must be measured on both pieces.

In order to experimentally validate these theories, the design, fabrication of a

new residual stress test specimen was presented. Two materials were chosen: a 316L

stainless steel and an aluminium 2024-T351. Both materials were experimentally

characterized in order to know the hardening behavior. The residual stress were

introduced in the specimen by means of a controlled indentation process that allows

to recreate the same residual stress field on specimens of the same dimensions and

material.

In order to predict the residual stress field produced by indentation, FE simula-
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tions were executed. A combined hardening model, calibrated on the experimental

curve, was used for each material.

Finite element models provide a good known stress prediction for indented disks,

but only if cyclic behavior of materials correctly calibrated and modeled. Cyclic data

is needed and simple isotropic or kinematic models are insufficient. The residual

stress produced by indentation were experimentally measured with neutron diffrac-

tion. Radial, hoop and axial residual stresses were measured along the cross section

of the indented disk. The results match pretty well with the FE prediction with

error less than 37 MPa.

Then the hoop residual stress along the cross section of the same disk were mea-

sured with the contour method. The stress map obtained is in excellent agreement

with the previous neutron diffraction test (error ±32 MPa) and the FE prediction

(error ±40 MPa). Furthermore, the residual stress were measured with the contour

method on another 316L SS disk, indented in the same condition. Also for this disk

the difference with the FE prediction is less than 40 MPa. The stress measured with

the contour method on the two disk match in a excellent way with a rms error of

19 MPa, confirming the effectiveness of the indentation process to produce repeat-

able residual stress field on the disks. Also, for the first time, the contour method

repeatability was demonstrated on nominally identical specimens and found to be

within the estimated uncertainty levels for a single test. Then, one of the two disk

was furthermore cut another time, and the contour method was applied again to

this plane.

A contour method test was also executed on the aluminium 2024-T351 indented

disk. The measured residual stress has the same trend as the FE prediction, but

difference up to 75 MPa are observed, probably because of a different hardening

behavior of the material in the though-thickness direction respect to the two in-

plane directions.

Finite element models provide a good known stress prediction for indented disks,

but only if anisotropic and cyclic behavior of materials correctly calibrated and mod-

eled. Cyclic data is needed and simple isotropic or kinematic models are insufficient.

Further a contour method test was executed on a HSLA-100 quenched plate

along two perpendicular plane, in order to validate the multiple cut theory.

Slitting tests were executed on both material disks in order to have a further

experimental validation of the residual stress. The results confirmed in both cases

what measured before with neutron diffraction and contour method and FE pre-

dicted, but with some very noticeable difference for the aluminum disk.

The most difficult part of validating the surface superposition theory turned
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out to be the surface stress measurements with the common x-ray and hole-drilling

methods.

In order to validate the surface superposition theory, the remaining residual

stresses were measured on the cut plane of the 316L ss disk by means of x-ray

diffraction, but unfortunately this test had not success because of the big grain size

of the material.

For the same purpose, the remaining residual stresses were measured with ESPI

hole drilling on the cut plane of the 316L ss and aluminium 2024-T351 disks. Some

poor results for certain drilling conditions had to be discarded. The stresses mea-

sured under good drilling conditions were superimposed with the change of the same

stress components obtained from the contour method tests. The reconstructed stress

confirm the validity of the surface superposition theory with a difference between the

reconstructed stress and the residual stress measured with the neutron diffraction

and FE predicted less than 25 MPa for the 316L ss disk. For the aluminum 2024-

T351 the difference with the FE predicted stress are less than 50 MPa. Hole drilling

stress measurements can be very sensitive to drilling conditions, which should be

validated for a specific material.

The multiple cut theory was validated by superimpose the residual stress mea-

sured with the contour method on the two normal cut planes of the HSLA-100

quenched plate and the 316L stainless steel disk. The results are in both case

excellent. In the first case there is not a comparative measurement result, but an

equi-biaxial residual stress state was measured as it is supposed to be for a quenched

plate. For the 316L ss disk the agreement with the other experimental measurements

and FE prediction is excellent with errors less than 20 MPa.

A specimen with higher magnitude transverse stresses might provide additional

confidence in the theory validations, but would probably require comparison only

with independent measurements since processes producing higher stresses are diffi-

cult to model.

All the experimental test executed demonstrated the validity of the multiple cut

and the surface superposition theories for measuring multiple stress components for

contour method. A new residual stress test specimen was presented with a good

repeatability of the residual stress field produced by the indentation process. Further

the contour method was validated one more time confirming its good accuracy and

its great repeatability.
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FORTRAN subroutines

A.1 INITIAL STRESSES SIGINI

In order to define the initial residual stress field, that must be self-equilibrated, the

following ABAQUS User subroutine was written.

SUBROUTINE sigini(SIGMA,COORDS,NTENS,NCRDS,NOEL,NPT,LAYER,KSPT,
1 LREBAR,REBARN)
INCLUDE ’ABA_PARAM.INC’
DIMENSION SIGMA(NTENS),COORDS(NCRDS)
CHARACTER*80 REBARN

C RESIDUAL STRESS DISTRIBUTIONS
C Set Beam Dimensions

a=0.5
L=5
h=1
x=COORDS(1)
y=COORDS(2)
A1=(L**4*(-5*a**2-a**3+L**2+a*L**2))/(L**2-a**2)**3
B=(L**4*(-4*a-a**2+L**2))/(-L**2+a**2)**3
C=(2*L**2*(-5*a**2-a**3+L**2+a*L**2))/(-L**2+a**2)**3
D=(2*L**2*(4*a+a**2-L**2))/(-L**2+a**2)**3
E=(5*a**2+a**3-L**2-a*L**2)/(-L**2+a**2)**3
F=(-4*a-a**2+L**2)/(-L**2+a**2)**3
SELECT CASE (1)

C Case of only normal stress in the middle section 1
CASE (1)
IF (abs(x)<=a) THEN

SIGMA(1)=(6/h**2*y**2-6/h*y+1)
SIGMA(2)=0
SIGMA(3)=0

ELSE IF (abs(x)>a .AND. abs(x)<=L) THEN
SIGMA(1)=(1-5/(L-a)**4*(abs(x)-a)**4+4/(L-a)**5*(abs(x)-a)**5)

1 *(6/h**2*y**2-6/h*y+1)
SIGMA(2)=(60/(L-a)**4*(abs(x)-a)**2-80/(L-a)**5*(abs(x)-a)**3)

1 *(-0.5/h**2*y**4+1/h*y**3-0.5*y**2)
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SIGMA(3)=sign(1.0,x)*(20/(L-a)**4*(abs(x)-a)**3-20/(L-a)**5*
1 (abs(x)-a)**4)*(2/h**2*y**3-3/h*y**2+y)
END IF

C Case of normal and shear stress in the middle section 2
CASE (2)
SIGMA(1)=(A1+B*x+C*x**2+D*x**3+E*x**4+F*x**5)

1 *(6/h**2*y**2-6/h*y+1)
SIGMA(2)=(-2*C-6*D*x-12*E*x**2-20*F*x**3)

1 *(-0.5/h**2*y**4+1/h*y**3-0.5*y**2)
SIGMA(3)=(-B-2*C*x-3*D*x**2-4*E*x**3-5*F*x**4)

1 *(2/h**2*y**3-3/h*y**2+y)
END SELECT
RETURN
END
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Appendix B

MATLAB scripts

B.1 CONTOUR DATA REDUCTION

B.1.1 Spline smoothing

Here is presented the MATLAB script used to reduce the data from contour measure-
ment and create a file with the displacement boundary condition for the subsequent
FE calculation.

%% ELIMINATE BAD POINTS HALF1
cmm_clean

%% ELIMINATE BAD POINTS HALF2
cmm_clean

%% IMPORT THE POINT CLOUDS ALIGN AND FLIP DATA
% open LANL_A1.txt and LANL_A2.txt for the cut data
clear
[x1,y1,z1]=textread(uigetfile(’*.txt’,’Select the data file’));
[x2,y2,z2]=textread(uigetfile(’*.txt’,’Select the data file’));

x01=0.3; y01=0.3; % traslation
x02=0.3; y02=0.3;
L1=60; W1=10; % dimension 1 half
L2=0; W2=0; % dimension 2 half

X1=x1-x01;
Y1=y1-y01; % rotating and traslating
X2=-(x2-x02)+L1;
Y2=y2-y02;% rotating, traslating and flip

bond1={[0 L1 L1 0 0] [0 0 W1 W1 0]};
bond2={[0 L2 L2 0 0] [0 0 W2 W2 0]};
createfigure(X1, Y1, X2, Y2, bond1{1}, bond1{2});daspect([1 1 1]);
%clear x1 x2 y1 y2 x01 x02 y01 y02 theta1 theta2 L2 W2
%% Save data
dlmwrite(’C1.txt’,[X1 Y1 z1],’delimiter’,’ ’,’precision’,10);
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dlmwrite(’C2.txt’,[X2 Y2 z2],’delimiter’,’ ’,’precision’,10);

%% INTERPOLATE THE DATA WITH DELAUNAY TRIANGULATION AND AVERAGE
% open A1.txt and A2.txt
[X1,Y1,z1]=textread(uigetfile(’*.txt’,’Select the data file’));
[X2,Y2,z2]=textread(uigetfile(’*.txt’,’Select the data file’));
createfigure(X1, Y1, X2, Y2, bond1{1}, bond1{2});daspect([1 1 1]);
p1=0.1;
p2=0.1;
x=[0:0.1:60]’;
y=[0:0.1:10]’;

x11=[0:0.1:60]’;
y11=[0:0.1:10]’;

[X,Y] = meshgrid(x, y);
[X11,Y11] = meshgrid(x11, y11);
Z1=griddata(X1,Y1,z1,X,Y,’nearest’); % linear
Z2=griddata(X2,Y2,z2,X,Y,’nearest’); % linear
Zt=(Z1+Z2)/2; % average surface
clear z1 z2

%% EXTRAPOLATING DATA AT NaN LOCATIONS
% Run Linear extrapolation.m with n=55 and m=15
Zt=Linearextr(10,10,X,Y,Z1,Z2);
% n & m number of points for x-direction & y-direction linear extrapolation
%%
p=mean(Zt(:,102:502),2); %102:502
%%
for i=1:numel(Zt(1,:))
Zt(:,i)=Zt(:,i)-p;
end
%% SMOOTHING WITH B-SPLINE
% open cut2.txt
clear xn yn knotsx knotsy sp sp1 diff rms contour zf2
A=load(uigetfile(’*.txt’,’Select the data file’));
nf=A(:,1);
xf=A(:,2);
yf=A(:,3);
zf=A(:,4);
x1=[0:L1/100:L1]’;
y1=[0:W1/40:W1]’;
for i=4%1:25
kx=3;
ky=3;
yn(i)=i;
xn(i)=round(L1/W1)*yn(i);
knotsx=augknt([0:L1/xn(i):L1],(kx));
knotsy=augknt([0:W1/yn(i):W1],(ky));
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sp=spap2({knotsy,knotsx},[ky kx],{y, x},Zt);
sp1=fnval( sp, {y, x} );
sp2=fnval( sp, {y11, x11});
diff=sp1-Zt;
rms(i)=norm(diff)/sqrt(numel(Zt));
%end
for j=1:size(xf)

zf2(j)=(-fnval( sp, {yf(j), xf(j)+30} ))’;
end
file=num2str(i);
Heading=’*Boundary’;
contour(:,1)=nf; contour(:,2:3)=3; contour(:,4)=zf2;
dlmwrite([’contour’ file ’.txt’],Heading,’delimiter’,’’);
dlmwrite([’contour’ file ’.txt’],contour,...
’delimiter’,’,’,’precision’,10,’-append’);
end
%% PLOT SMOOTHING DATA AND ORIGINAL DATA
figure1 = figure;
axes1 = axes(’Parent’,figure1,’XLim’,[0 max(x)],...

’YLim’,[0 max(y)],’ZLim’,[min(min(Zt)) max(max(Zt))]);
view(axes1,[-37.5 30]);
grid(axes1,’on’);
hold(axes1,’all’);
surf1 = surf(X,Y,Zt,’Parent’,axes1);
%surf2 = surf(x1,y1,Z_smooth,’Parent’,axes1);
surf3 = surf(X,Y,sp1,’Parent’,axes1);
surf4 = surf(X11,Y11,sp2,’Parent’,axes1);
surf5 = surf(X,Y,diff,’Parent’,axes1);
daspect([1000 1000 1]);

%%
for i=1:25
k(:,:,i)=dlmread([’uncert_’ int2str(i) ’.txt’]);
end
cut=dlmread(’cut.txt’);
for n=1:numel(k(:,1,1));

for m=1:numel(cut(:,1));
if k(n,1,1)==cut(m,1)

k0(m,1,:)=k(n,1,:);
k0(m,2,:)=k(n,4,:);

end
end

end
%%
for n=2:size(k0,3)

RMS1(n-1,1)=norm(std(k0(:,:,n-1:n),0,3))/sqrt(numel(k0(:,:,1)));
end
for n=2:size(k0,3)-1

RMS3(n-1,1)=norm(std(k0(:,:,n-1:n+1),0,3))/sqrt(numel(k0(:,:,1)));
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% rms CONSIDERING 3 POINTS

end
%%
knots=1:25;
knots1=2:25;
knots3=2:24;
% figure2 = figure;
% axes2 = axes(’Parent’,figure2,’XLim’,[0 max(x)],...
% ’YLim’,[0 max(y)],’ZLim’,[min(min(error)) max(max(error))]);
% view(axes2,[-37.5 30]);
% grid(axes2,’on’);
% hold(axes2,’all’);
% surf2 = surf(X,Y,error,’Parent’,axes2);

mesh_indentation.inp is the file of the FE model.

B.1.2 Linear extrapolation

This is the MATLAB function for the linear extrapolation of the contour data in

the region near the edges.

function Zt=Linearextr(n,m,X,Y,Z1,Z2)
% LINEAR EXSTRAPOLATION OF DATA:
% X(i,j) and Y(i,j) (location of the triangulation grid
% for the two surfaces)
% Z1(i,j) and Z2(i,J) values of the two surfaces at the X(i,j)
% and Y(i,j) location
% the file gives as result the average of two surfaces
% after linear extrapolation
% change n and m to perform linear extrapolation
%(n and m are the number of points to consider in the
% linear extrapolation)

Zt1=Z1; %first surface
Zt2=Z2; %second surface

% EXTRAPOLATING DATA AT NaN LOCATIONS
xm=round(size(X,1)/2);
ym=round(size(Y,2)/2); % find the center point coordinates

% exstrapolation 1st quadrant
for j=xm:-1:1

for i=ym:size(X,2)
if isnan(Zt1(j,i)) & i>ym+n-1

%Zt1(j,i)=Zt1(j,i-1);%
Zt1(j,i)=polyval(polyfit(X(j,i-n:i-1),Zt1(j,i-n:i-1),1),X(j,i));

else
if j>1
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if isnan(Zt1(j-1,i)) & j<xm-n+1
continue

end
end

end
end

end
% exstrapolation 2nd quadrant
for j=xm:-1:1

for i=ym:-1:1
if isnan(Zt1(j,i)) & i<ym-n+1

%Zt1(j,i)=Zt1(j,i+1);
Zt1(j,i)=polyval(polyfit(X(j,i+1:i+n),Zt1(j,i+1:i+n),1),X(j,i));

else
if j>1

if isnan(Zt1(j-1,i)) & j<xm-n+1
continue

end
end

end
end

end
% exstrapolation 3rd quadrant
for j=xm:size(X,1)

for i=ym:-1:1
if isnan(Zt1(j,i)) & i<ym-n+1

%Zt1(j,i)=Zt1(j,i+1);
Zt1(j,i)=polyval(polyfit(X(j,i+1:i+n),Zt1(j,i+1:i+n),1),X(j,i));

else
if j<size(X,1)

if isnan(Zt1(j+1,i)) & j>xm+n-1
continue

end
end

end
end

end
% exstrapolation 4th quadrant
for j=xm:size(X,1)

for i=ym:size(X,2)
if isnan(Zt1(j,i)) & i>ym+n-1

%Zt1(j,i)=Zt1(j,i-1);
Zt1(j,i)=polyval(polyfit(X(j,i-n:i-1),Zt1(j,i-n:i-1),1),X(j,i));

else
if j<size(X,1)

if isnan(Zt1(j+1,i)) & j>xm+n-1
continue

end
end
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end
end

end
% 2nd surface
% exstrapolation 1st quadrant
for j=xm:-1:1

for i=ym:size(X,2)
if isnan(Zt2(j,i)) & i>ym+n-1

%Zt2(j,i)=Zt2(j,i-1);
Zt2(j,i)=polyval(polyfit(X(j,i-n:i-1),Zt2(j,i-n:i-1),1),X(j,i));

else
if j>1

if isnan(Zt2(j-1,i)) & j<xm-n+1
continue

end
end

end
end

end
% exstrapolation 2nd quadrant
for j=xm:-1:1

for i=ym:-1:1
if isnan(Zt2(j,i)) & i<ym-n+1

%Zt2(j,i)=Zt2(j,i+1);
Zt2(j,i)=polyval(polyfit(X(j,i+1:i+n),Zt2(j,i+1:i+n),1),X(j,i));

else
if j>1

if isnan(Zt2(j-1,i)) & j<xm-n+1
continue

end
end

end
end

end
% exstrapolation 3rd quadrant
for j=xm:size(X,1)

for i=ym:-1:1
if isnan(Zt2(j,i)) & i<ym-n+1

%Zt2(j,i)=Zt2(j,i+1);
Zt2(j,i)=polyval(polyfit(X(j,i+1:i+n),Zt2(j,i+1:i+n),1),X(j,i));

else
if j<size(X,1)

if isnan(Zt2(j+1,i)) & j>xm+n-1
continue

end
end

end
end

end
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% exstrapolation 4th quadrant
for j=xm:size(X,1)

for i=ym:size(X,2)
if isnan(Zt2(j,i)) & i>ym+n-1

%Zt2(j,i)=Zt2(j,i-1);
Zt2(j,i)=polyval(polyfit(X(j,i-n:i-1),Zt2(j,i-n:i-1),1),X(j,i));

else
if j<size(X,1)

if isnan(Zt2(j+1,i)) & j>xm+n-1
continue

end
end

end
end

end
%
%
%
% Extrapolation in y-direction 1st surface
% exstrapolation 1st quadrant
for j=xm:-1:1

for i=ym:size(X,2)
if j>1

if isnan(Zt1(j-1,i)) & j<xm-m+1
Zt1(j-1,i)=polyval(polyfit(Y(j+m-1:-1:j,i),...
Zt1(j+m-1:-1:j,i),1),Y(j-1,i));

end
end

end
end
% exstrapolation 2nd quadrant
for j=xm:-1:1

for i=ym:-1:1
if j>1

if isnan(Zt1(j-1,i)) & j<xm-m+1
Zt1(j-1,i)=polyval(polyfit(Y(j+m-1:-1:j,i),...
Zt1(j+m-1:-1:j,i),1),Y(j-1,i));

end
end

end
end
% exstrapolation 3rd quadrant
for j=xm:size(X,1)

for i=ym:-1:1
if j<size(X,1)

if isnan(Zt1(j+1,i)) & j>xm+m-1
Zt1(j+1,i)=polyval(polyfit(Y(j-m+1:j,i),...
Zt1(j-m+1:j,i),1),Y(j+1,i));

end
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end
end

end
% exstrapolation 4th quadrant
for j=xm:size(X,1)

for i=ym:size(X,2)
if j<size(X,1)

if isnan(Zt1(j+1,i)) & j>xm+m-1
Zt1(j+1,i)=polyval(polyfit(Y(j-m+1:j,i),...
Zt1(j-m+1:j,i),1),Y(j+1,i));

end
end

end
end
% exstrapolation 1st quadrant 2bd surface
for j=xm:-1:1

for i=ym:size(X,2)
if j>1

if isnan(Zt2(j-1,i)) & j<xm-m+1
Zt2(j-1,i)=polyval(polyfit(Y(j+m-1:-1:j,i),...
Zt2(j+m-1:-1:j,i),1),Y(j-1,i));

end
end

end
end
% exstrapolation 2nd quadrant
for j=xm:-1:1

for i=ym:-1:1
if j>1

if isnan(Zt2(j-1,i)) & j<xm-m+1
Zt2(j-1,i)=polyval(polyfit(Y(j+m-1:-1:j,i),...
Zt2(j+m-1:-1:j,i),1),Y(j-1,i));

end
end

end
end
% exstrapolation 3rd quadrant
for j=xm:size(X,1)

for i=ym:-1:1
if j<size(X,1)

if isnan(Zt2(j+1,i)) & j>xm+m-1
Zt2(j+1,i)=polyval(polyfit(Y(j-m+1:j,i),...
Zt2(j-m+1:j,i),1),Y(j+1,i));

end
end

end
end
% exstrapolation 4th quadrant
for j=xm:size(X,1)
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for i=ym:size(X,2)
if j<size(X,1)

if isnan(Zt2(j+1,i)) & j>xm+m-1
Zt2(j+1,i)=polyval(polyfit(Y(j-m+1:j,i),...
Zt2(j-m+1:j,i),1),Y(j+1,i));

end
end

end
end
%
Zt=(Zt1+Zt2)/2; % average surface
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ABAQUS scripts

Sample files for the finite element analysis are presented here to help others that

may want to use this procedure. The sample files are presented in sufficient detail

to allow understanding of the procedure. To conserve space some of the details are

omitted, such as the node and element definitions.

C.1 INDENTATION PREDICTION

C.1.1 316L stainless steel disk

Here is presented the ABAQUS input file used to simulate the indentation of the
316L stainless steel disk.

*Heading
*Preprint, echo=NO, model=NO, history=no, contact=NO
**
*INCLUDE,INPUT=mesh_indentation.inp
**
*Material, name=SS316L
*Elastic
193000., 0.3
*Plastic, hardening=COMBINED, data type=parameters
183.84,28722,230.71
*cyclic hardening, parameters
183.84, 100, 12
*Material, name=TSA2
*Elastic
204000, 0.3
**
*Surface Interaction, name=no_friction
1.,
*Friction
0.,
*Surface Behavior, pressure-overclosure=HARD
**
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*Boundary
symmetry_axis, YASYMM
symmetry_plane, YSYMM
**
*Contact Pair,interaction=no_friction,small sliding,type=SURFACE TO SURFACE
disk_surface, indenter_surface
** ----------------------------------------------------------------
**
** STEP: Load
**
*Step, name=Load, nlgeom=YES
*Static
1, 535, 0.5, 50
**
*Boundary
head, 2, 2, -0.0867
** 0.107
*Restart, write, frequency=0
**
*Output, field
*Node Output
U,RF,CF
*Element Output
S,E,NE,LE,EE,PE,ER, PEEQ
*El print, pos=averaged at nodes, elset=cut
S11,S22, S33, S12, INV3, EE11, EE22, EE33, Temp
*Output, history
*Node Output, nset=head
RF2, U2
*Element Output, elset=center
ER
*Element Output, elset=concentration
ER
*Node Output, nset=disk_surface
RF2, U2
**contact Output, nset=disk_surface
**CFN2
**
*End Step
** ----------------------------------------------------------------
**
** STEP: unload
**
*Step, name=unload, nlgeom=YES
*Static
1, 510., 0.5, 50
**
*Boundary
head, 2, 2, 0
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**
*End Step

mesh_indentation.inp is the file of the FE model.

C.1.2 Aluminium 2024-T351 disk

Here is presented the ABAQUS input file used to simulate the indentation of the
aluminium 2024-T351 stainless steel disk.

*Heading
*Preprint, echo=NO, model=NO, history=NO, contact=NO
**
*INCLUDE,INPUT=mesh_indentation.inp
**
*Material, name=SS316L
*Elastic
73200, 0.33
*Plastic, hardening=combined, data type=parameters
219.90, 67145, 411.99
*cyclic hardening, parameters
219.90, 200, 7
*Material, name=TSA2
*Elastic
204000, 0.3
**
*Surface Interaction, name=no_friction
1.,
*Friction
0.,
*Surface Behavior, pressure-overclosure=HARD
**
*Boundary
symmetry_axis, YASYMM
symmetry_plane, YSYMM
**
*Contact Pair,interaction=no_friction,small sliding,type=SURFACE TO SURFACE
disk_surface, indenter_surface
** ----------------------------------------------------------------
**
** STEP: Load
**
*Step, name=Load, nlgeom=YES
*Static
1, 663, 0.5, 50
**
*Boundary
head, 2, 2, -0.11
**
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*Restart, write, frequency=0
**
*Output, field
*Node Output
U,RF,CF
*Element Output
S,E,NE,LE,EE,PE,ER
*El print, pos=averaged at nodes, elset=cut
S11,S22, S33, S12, S13, S23, EE11, EE22, EE33
*Output, history
*Node Output, nset=head
RF2, U2
*Node Output, nset=disk_surface
CF2,RF2, U2
*Element Output, elset=center
PEEQ,ER
*Element Output, elset=concentration
PEEQ,ER
**contact Output, nset=disk_surface
**CFN2
**
*End Step
** ----------------------------------------------------------------
**
** STEP: unload
**
*Step, name=unload, nlgeom=YES
*Static
1, 563., 0.5, 50
**
*Boundary
head, 2, 2, 0
**
*End Step

mesh_indentation.inp is the file of the FE model.

C.2 HSLA-100 QUENCHED PLATE

Here is presented the ABAQUS input file used for the application of the multiple

component contour method from multiple cuts to the HSLA-100 quenched plate.

*HEADING
HSLA-100 plate
**
*PREPRINT,MODEL=NO,ECHO=NO,HISTORY=NO
** Import mesh:
*INCLUDE,INPUT=HSLAmesh.inp
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** HSLAmesh.inp is the input file with node and element definitions
**
*SOLID SECTION, ELSET=BLOCK, MATERIAL=HSLA100

1.,
**
*MATERIAL, NAME=HSLA100
**
*ELASTIC, TYPE=ISO
197000, 0.29
**
*STEP, NAME=First_Cut
*STATIC
**
*BOUNDARY, OP=NEW
corn1,1,2, 0.
corn2, 2,, 0.
*INCLUDE,INPUT=contour1.txt
** These are the displacement applied
** on the nodes of the first cut surface
**
*OUTPUT,FIELD
*ELEMENT OUTPUT
S
*NODE OUTPUT
U
*EL PRINT, POS=AVERAGED AT NODES, ELSET=cut1
S11,S22, S33, S12, S13, S23
*EL PRINT, POS=AVERAGED AT NODES, ELSET=cut2
S11,S22, S33, S12, S13, S23
*EL PRINT, POS=AVERAGED AT NODES, ELSET=ligament
S11,S22, S33, S12, S13, S23
*end step
**
*STEP, NAME=Second_cut
*STATIC
*MODEL CHANGE, REMOVE
half
** Command for removing half of the model
*BOUNDARY, OP=NEW
corn3,2,3, 0.
corn4, 2,, 0.
*INCLUDE,INPUT=contour2.txt
** These are the displacement applied
** on the nodes of the second cut surface
**
*END STEP
**

HSLAmesh.inp is the file of the FE model. contour1.txt is the contour in term of
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boundary conditions for the first cut plane. contour2.txt is the contour in term of

boundary conditions for the second cut plane.

C.3 316L SS DISK

This is the ABAQUS input file used for the uncertainty analysis of the contour

method result for the 316L stainless steel indented disk.

*HEADING
Intended 316L disk
*PREPRINT,MODEL=NO,ECHO=NO,HISTORY=NO
**
** Import mesh:
*INCLUDE,INPUT=316Lmesh.inp
**
*SOLID SECTION, ELSET=BLOCK, MATERIAL=SS316L
1.,
**
**
*MATERIAL, NAME=SS316L
**
*ELASTIC, TYPE=ISO
193000,0.29
**
*BOUNDARY
corn1,1,2,0.
corn2,1, ,0.
**
*STEP, perturbation, name=Forcing_Back
*STATIC
**
**
*load case, name=Uncert1
*INCLUDE,INPUT=contour1.txt
*end load case
**
*load case, name=Uncert2
*INCLUDE,INPUT=contour2.txt
*end load case
**

Put all the needed load case

*load case, name=UncertN
*INCLUDE,INPUT=contourN.txt
*end load case
**
**
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*OUTPUT,FIELD
*ELEMENT OUTPUT
S
*NODE OUTPUT
U
**
**NODE PRINT, Nset=cut
**Coord
*EL PRINT, POS=AVERAGED AT NODES, ELSET=cut
S11,S22, S33, S12, S13, S23
**
*end step

316Lmesh.inp is the file of the FE model. contour1.txt, contour2.txt and

contourN.txt are the contours in term of boundary conditions for the cut plane

obtained with a increasing number of knots point for the spline fitting.
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