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The morphology, processing, and preparation of a target material 
can be as important as its chemical composition 
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OMEGA and NIF experiments are designed to study mechanical 
properties of materials at high pressures and high strain rates 

 Rayleigh-Taylor experiments for 
validation of strength models 

• RT instability develops when a less dense 
fluid pushes a more dense fluid 

• Strength of the material slows growth 
• Instability growth measured with VISAR 

Hydrodynamics simulation of RT growth 

Shengtai Li & Hui Li, “Parallel AMR Code for Compressible MHD or HD 
Equations,” LANL Report LA-UR-03-8926 http://www.physicscentral.com/explore/pictures/cup.cfm 

High density liquid on top of a lower density liquid 
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Rayleigh-Taylor instabilities are seeded with sine-wave 
ripples on tantlum in OMEGA and NIF targets 

Ripple Dimensions 
• Peak-to-valley amplitude: 1 – 7 µm 
• Wavelength: ~50 µm 
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A 5 Mbar drive for Ta Rayleigh-Taylor experiments was 
demonstrated at NIF in March 2011 

Fully assembled target with VISAR and 
unconverted light shields 

View of the target package, looking down 
the VISAR shield 

Assembly drawing 

Side view of the target package (LiF & 
quartz windows, Ta foil, Al spacer, foam 

reservoir encased in epoxy) 

Face-on view of the target package 
mounted on the outside of a hohlraum 

5 mm 

5 mm 2 mm 

1 mm 
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RT experiments measure material properties; it is important to 
select, process, and characterize tantalum carefully 

Not all high-purity tantalum is the same! 

Microstructure of rolled Ta 
(pancaked grains) 

Equiaxed grains 

Rolling produces non-equiaxed grains 

Most commercially available foils are rolled 

Rolled and annealed 

400 µm 

100 µm 

100 µm 
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In a “textured” material, the grains have a preferred 
crystallographic orientation 

From J.F. Schackelford, Introduction to Materials Science for Engineers, 1988. 

Random orientation Textured 
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We use electron backscatter diffraction (EBSD) to measure 
texture and grain size 
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A piece of material can have a preferred orientation in 
one direction, while randomly oriented in others 

ND 

RD 

TD 

ND 

RD 

TD 

The top face of the block has 
a preferred 111 orientation 

The sides of the block have a 
preferred 101 orientation 

ND 

TD 
RD 

Pole figure for normal 
direction 

ND = normal direction 
TD = transverse direction 
RD = rolling direction (note:  
this is not necessarily the 
direction in which the sample 
was rolled 
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Tantalum is notoriously inhomogeneous with respect to 
grain size and texture 

Banding readily occurs, even over small length scales 

1 mm 1 mm 
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Characterization of tantalum is essential, given its 
propensity for inhomogeneity 

500 µm 

500 µm 
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The morphology, processing, and preparation of a target material 
can be as important as its chemical composition 

MECHANICAL PROPERTIES 
Strength 
Ductility 

MORPHOLOGY 
Grain size 

Grain shape 
Texture 

FABRICATION 
Polishing 
Cutting 

Deformation 

CHEMICAL COMPOSITION 
Impurity levels 

Location of impurities 
Impurity composition 

PROCESSING 
Rolling 

Annealing 
Sputtering 



13 
Lawrence Livermore National Laboratory 

Grain size affects material strength (Hall-Petch relation)  

 Strength is inversely related to grain size 
(Hall-Petch equation) 

 Grain size is typically measured with optical or 
scanning electron microscopy 

σy = yield stress 

σ0 = frictional stress required to 
move dislocations 

ky = “locking parameter” (relative 
hardening contribution of grain 
boundaries) 

D = grain size 

From M.A. Meyers & K.K. Chawla, Mechanical Metallurgy, 1984. 
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The strength of tantalum is also a strong function of 
orientation (texture) 

J.F. Byron, Journal of the Less-Common Metals, 1968. 

Yield strength of oriented 
single crystals 

Strain rate = 4 x 10-4/s 
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The morphology, processing, and preparation of a target material 
can be as important as its chemical composition 
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Small amounts of impurities can dramatically affect the 
strength of tantalum 

T.E. Tietz and J.W. Wilson, Behavior and Properties of Refractory Metals, 1965. 
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The morphology, processing, and preparation of a target material 
can be as important as its chemical composition 
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Sputter-deposited Ta has a highly defected, columnar 
morphology, which affects mechanical properties 

Plan view Cross-section 

100 nm 200 nm 
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Compared to a commercially available Ta foil, sputter-
deposited Ta is significantly harder 

Vickers Hardness = 137.7 Vickers Hardness = 208 
Commercially available foil Sputter-deposited foil 

Plan view 

Cross-section 
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200 µm 

1 µm 

2 µm 
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The morphology, processing, and preparation of a target material 
can be as important as its chemical composition 
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Artifacts can be introduced during target fabrication 

 Cutting/thinning operations 
• Polishing can leave surface damage 
• Electro-discharge machining can introduce 

impurities 
 Coining 

• Results in increased hardness 
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Aggressive polishing can leave a layer of deformed 
material on the surface of the target 

Polishing damage 

Polishing damage 
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The surface layer damaged by polishing is harder than 
the underlying material 

Hardness values obtained from nanoindentation 

1.77 GPa 

1.5 GPa 

2.09 GPa 

1.48 GPa 
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In tantalum, we discovered that polishing to 
approximately 50 µm thick results in deformation banding 

Plan view SEM Cross-sectional SEM 

Plan view SEM 

50 µm 

10 µm 

10 µm 
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Deformation bands in thin tantalum foils are small angle 
misorientations—not twins 

Backscatter SEM micrograph of area scanned 
at high resolution 

EBSD Scan Area 

[001]S Inverse Pole Figure Map of scan area 
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Deformation bands in thin tantalum foils are small angle 
misorientations—not twins 
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Annealing appears to remove most of the deformation 
banding 

Pre-annealing Annealed at 980°C for 30 minutes (UHV) 

Debris is due to laser 
cutting and previous 
mounting medium 
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25 µm 
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The morphology, processing, and preparation of a target material 
can be as important as its chemical composition 
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