

Infrared Blocking of Ultrathin Aluminum Films on Freestanding Polyimide Substrates

Bruce Lairson, Jacob Betcher, and Travis Ayers Luxel Corporation, Friday Harbor, WA

Aluminum /Polyimide Advantages

Polyimide (<200nm)/Aluminum (<100nm):

- -Good Soft X-ray transparency -Good mechanical durability
- -Atomic oxygen resistance
- -Vis-IR-LWIR blocking

Microcalorimetry/Astronomy

Contamination Blocking Filters

For these ultrathin films, it was noticed that UV-Vis-IR transmission could vary greatly depending on filter constraints

- -Filter film tension
- -Filter Size
- -Coating method (E-beam, thermal, sputtering)

Future NIF Windows?

- Infrared transmission depends on coating parameters
- IR transmission varies greatly, visible transmission largely unaffected
- Different IR transmission not detectable from visible spectra or images

Aluminum Optical Density Depends on Processing Parameters

Parameters:

- -Sputter, e-beam, or thermal
- -Rate
- -Vacuum impurities
- -etc. etc.

Luxel has a well-developed LEH window process with 25nm Al and 500nm polyimide

Perform DOE Screening to isolate variables and responses

Experimental Runs on 200nm thick polyimide

-Various coating methods, cleaning methods

Cleaning	No clean	Air Plasma	IB Clean	ArH Plasma	Air Plasma	No clean	No Clean	No Clean
Rate A/sec)	10	10	10	10	10	10	10	10
		Off					Off	Off
On/Off	On	Substrate	On	On	On	On	Substrate	Substrate
Substrate	Substrate	Тор	Substrate	Substrate	Substrate	Substrate	Bottom	Тор
Crucible	None	None	None	None	None	None	None	None
Clean	None	1 min air	IB 5 min	ArH 20min	air 20min	None	None	None
Base								
Pressure	3.00E-06	5.00E-07	5.00E-07	5.00E-07	5.00E-07	3.00E-06	1.50E-06	1.50E-06
	System 5	System 6	System 5	System 6	System 6	System 6	System 5	System 5
Method	Ebeam	Ebeam	Ebeam	Ebeam	Ebeam	Ebeam	Ebeam	Ebeam
Post Treat								
in situ	None	None	None	None	None	None	None	None
T1800 %	1.57	20.75	1.85	1.26	1.81	1.4	13.4	16.65
T450-650 %	3.79	6.48	4.41	3.98	5.78	3.36	6.7	6.7

-Visible Transmission (450-650nm) varies little.

-Infrared transmission (e.g. 1800nm) varies greatly

Change in IR Optical Density for Selected Process Changes 25nm Al/200nm polyimide

	Optical Density		
Condition:	Change (1800nm)		
Off vs On Substrate System 6 Ebeam Evap	-1.17		
Off vs On Substrate Thermal Evap	-0.92		
Off vs On Substrate System 5 Ebeam Evap	-0.89		
High Dose Air Plasma vs No Plasma Clean	-0.08		
Low Dose Air Plasma vs No Plasma Clean	-0.03		
Low Dose ArH plasma vs No Plasma Clean	0.02		
Ion Beam Clean vs. No Clean	0.03		
System 6 vs System 5	0.04		
High Dose ArH plasma vs. No Plasma Clean	0.05		
Front vs back side coating	0.05		

-Coating on freestanding films results in lower infrared optical density -Plasma cleaning prior to aluminization might be mildly beneficial

Desired thicknesses for IR-dense aluminum on polyimide

Goal: Produce IR-blocking aluminum on <200nm thick polyimide in large (~100mm) areas

Transmission of 25nm Al on 100-200nm Thick Polyimide

-Aluminum is Optically Coupled to the Polyimide Film

How to separate Intrinsic IR density of Aluminum from Substrate Interference? Does the microstructure change for the different aluminum processes?

SEM Images of Aluminum on Polyimide

4 microns 4 microns Top: AI deposited onto 200 nm freestanding polyimide.

Bottom: AI deposited onto 200 nm polyimide while still on the imidization substrate. -Dark dendrites appear along the ground path.

Optical Model for Discontinuous Aluminum Transmission

APPLIED PHYSICS LETTERS 97, 041901 (2010)

Percolation and polaritonic effects in periodic planar nanostructures evolving from holes to islands

Y. Peng,^{1,a)} T. Paudel,¹ W.-C. Chen,¹ W. J. Padilla,¹ Z. F. Ren,¹ and K. Kempa^{1,2,a)}

-Complication: Eb changes with island geometry (ignored)
-OK to use effective dielectric constant if scattering vector is small

Optical Model for Discontinuous Aluminum Transmission

-Lorentz layers defined as Mie scattering function convolved with Bulk Aluminum* -Define Parameter "%Continuous" = Thickness bulk Al/Total modeled Al thickness

*E. Palik, "Handbook of Optical Constants of Solids", Academic Press, 1998

-Interband absorption at 800nm shifts and disappears for islanded AI (neglected)

Optical Model Fits for 40nm Aluminum Transmission

-Model describes infrared transmission increases well

-Loss of interband absorption peak for islanded Al is not captured by the model -IR transmission increase is due to film discontinuity

Substrate Temperature Increase During Al Deposition

-Radiative cooling

Activation Energy for Grain Growth in Aluminum Coatings A. Jankowski, J. L. Ferreira, J. P. Hayes, Thin Solid Films 491 (2005) 61-65 300

100

0

200

Temperature (°C)

Transmission of 25nm Al (Same coating run) on Various Thickness Polyimide Substrates

Thicker freestanding polyimide yields more continuous Al films

Thermal contact with a substrate provides enough thermal reservoir to keep coating cool

Transmission of 25nm Aluminum /50nm Polyimide

Plasma Clean of Polyimide Prior to Al Coating

-On-substrate reflected color changed from blue to silver -Improvement of 10% in %Continuous

Luxel Confidential

A New Process for Al/ <200nm Polyimide

100mm 20nm Al/100nm Polyimide Transmitted Light Image

-Need uniform thermal contact with heat sink -Must avoid generating defects in ultrathin film

Far-Infrared Transmission of Low Temperature Aluminum/Polyimide Process

Infrared Density of Low Temperature Al/Polyimide Process Various aluminum thicknesses

Atomic Oxygen Resistance of Low-Temperature Al Process

-Photograph of 200nm thick aluminized polyimide filters after 1.5E10 atomic oxygen atom exposure

-Low Temperature Aluminum process improves atomic oxygen durability

Luxel Confidential

>75mm diameter low temperature Al demonstration films

Conclusions:

-Poor infrared blocking of aluminum films on <200nm polyimide is due to discontinuity in the films

-Discontinuity is primarily caused by elevated temperature during coating of a freestanding film

-An optical model based on Lorentz oscillators ("islands and holes") describes relative transmission changes in the visible to far infrared

-Reducing the coating temperature and implementing an ion clean improves Al to near-bulk optical properties