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Unlike GDP, beryllium is heterogeneous at micron scale 

• Process/structure interactions critical to performance 

Micro-structure 

Target performance 

Fabrication process 

• This talk presents a Cu-Be case study 
• Same methodology applicable to other NIF dopants 
 Introduction 



NIF Be capsules have step-wise dopant profiles; 
diffusion during pyrolysis blurs the steps 

• Interfaces become diffused after mandrel removal 
− Measured non-destructively by contact radiography 

Cu/Be 

• NIF design uses 5 distinctive layers to optimize shock timing 
 

Need quantification to estimate the impact on implosion 
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SEM Backscattered Electron (BSE) contrast reveals  
dramatic difference in pre- and post-pyro samples 

• Post-pyro interfaces become diffused and heterogeneous 

• Heterogeneity length scale: 0.5-5 µm radial, 0.5-10 µm lateral 
− >10x larger than bulk diffusion behavior (Butrymowicz 1975) 

 

Pre-pyro 

Layer #3: 
0.70 at% Cu 

Layer #4: 
0.35 at% Cu 

Layer #5: 
0.00 at% Cu 

Post-pyro Higher Ar 

5keV field emission SEM on ion polished Be cross-section 



Energy-Dispersive Spectroscopy (EDS) unambiguously 
identified Cu variations as the cause of BSE contrast 

EDS Cu Map BSE Image 

Post-pyro: 
Diffuse Interface 

Pre-pyro: 
Sharp Interface 

Need to distinguish two scenarios: (1) polishing smear (2) Cu diffusion 
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Measuring Cu from outside, through undoped Be 
layer, eliminates the possibility of polishing smear 

5.3um 

• 20keV e-beam probes <5 µm depth into bulk beryllium 
− Can’t see through 5.3 µm undoped buffer layer unless Cu diffuse 

1 at% Cu 

0 at% Cu 
Outside 

e-beam probes outside surface 

Test suggested by 
J. Edwards @ LLNL 



Copper diffused into the undoped buffer layer in 
highly heterogeneous manner during pyrolysis 

Line is where EDS scan was performed 

• BSE contrast invisible 
on pre-pyro surface 

• BSE contrast conspicuous 
on post-pyro surface 

• Post-pyro contrast: “super nodules” on textured background 

This nodule was FIB Lifted for TEM 



EDS element line-scans provide further validation 
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• BSE contrast agrees with Cu profile measured by EDS linescan 
− Establish BSE as quick semi-quantitative Cu mapping technique 

• Varying e-beam energy proves Cu from an internal source 
− Higher energy probes deeper and measures higher Cu at% 

Max depths:  
20KeV: 5.0um 
15KeV: 3.0um 
10KeV: 1.5um 
05KeV: 0.4um 

This nodule was FIB Lifted for TEM 



X 

Y FIB Slice 

Nodule center location 
On FIB slice 

White ring, due to oxide, marks the “super 
nodule” growth column boundary 

White dot due to 
enhanced Cu diffusion ~130 nm thin FIB slice 

shows porous structures  
near nodule center 

FIB slice was lifted-out from the “super nodule” on post-
pyro sample to study structural-composition correlation 

Top-down SEM image (BSE contrast) 

Lots of voids near 
nodule center 

Lack of voids 
outside nodule 



Scale bar: 1 µm  
Composite TEM Image 

TEM shows nodule center having finer, heterogeneous, 
and porous structures, which can enhance Cu diffusion 

Nano-voids present 
mostly near nodule center 

Grain sizes vary greatly: 
50-200nm near nodule center 
500-1000nm outside nodule 

TEM Black represents disorder 



~20 µm “super nodules” are growth columns induced 
by mandrel defects, terminating as surface bumps 

Large bumps on  
outside surface 

SEM image of a bump cross-section 

Abnormal growth initiated by mandrel contaminant 

FIB through the nodule 



X-ray imaging confirms strong correlation between 
“super nodules” and mandrel surface contaminants 

X-ray tomography slices 

“Super 
nodules” 
strings 

Mandrel 
surface 
defects 

Two features parallel to each other 

X-ray transmission 



Inhomogeneous background Cu diffusion produces 
atomic Z contrast on both cross-section and OD 

(1) Cross-section view 
(2) Top surface view 

• Pattern length scales match between two BSE views of the 
same post-pyro sample 



Background Cu diffusion produced ±0.06 at% 
1-σ variations, which is unwanted by target designers 
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GA226-05 post-pyro BSE contrast line-outs 

• Copper profiles near interface are anti-phased,  
expected if a conserved total quantity is redistributed 



A phenomenological description of Cu diffusion in beryllium 

85um 

Sputtered beryllium grow in vertical 
columns, capped at the surface as  
nodules.  Each column is a cluster of  
submicron columnar grains 

Cu: 0.0 at% 

Cu: 1.0 at% 

There are ~25um “super” 
nodules embedded inside a 
sea of 5um regular nodules. 

5.7um 

25um 5um 

Pre-pyro 

Post-pyro 
Cu diffuses faster toward center of 
each nodule, even faster for “super” 
Nodules 

See Poster P-28 by H. Huang for metrology technique details 



Oxide provides an effective diffusion  barrier 

Thermal oxide stopped  
Cu diffusion 

Strong Cu diffusion where 
no oxide was introduced 

• Oxide idea evolved 
– ALD Al2O3 
– Thermal oxide 
– In-situ oxide 

See Oral Tue. AM1-4 by K. Youngblood 



Cu diffuses inhomogeneously in sputtered beryllium 

• Cu structure length scale varies: 
– 0.5 to 5 µm radially,  
– Minimum 10x larger than bulk prediction 

• Two types of Cu structures:  
– background variations & “super nodules” 

• Background Cu varies by ~+/-0.06 at% (1-σ) 
• “Super nodules” correlates to mandrel contamination 

– Nodule centers are porous, with smaller grains which 
enhanced diffusion 

• Cu diffusion, uniform or not, can be stopped by oxide 
barriers 
– Beryllium can remain to be an ablator choice 

Summary 



Same methodology can be applied to other dopants, 
Work in progress on W, Zr, Al, Si 

Summary 

• Dopant behaviors vary greatly 
− Uniform and stays uniform: W and Zr 
− Uniform and becomes non-uniform: Cu 
− Non-uniform but doesn’t further evolve: Si 
− Non-uniform and worsens upon pyro: Al 

• Different physical processes in the play 
− Solubility => phase segregation 
− Mobility  => diffusion 

• Same measurement strategy apples 
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