
ORNL is managed by UT-Battelle  

for the US Department of Energy 

Quantitatively Modeling 

Application Resilience with the 

Data Vulnerability Factor 

Jeffrey S. Vetter 

Li Yu, Sparsh Mittal, Dong Li, 
Jeremy Meredith 

 

http://ft.ornl.gov  vetter@computer.org 

Presented to 

2015 Salishan Conference on  

High-Speed Computing 
Gleneden Beach, Oregon 

 

30 Apr 2015  

http://ft.ornl.gov/
http://ft.ornl.gov/
mailto:vetter@computer.org


2 

Overview 

• We need methodologies and tools to balance the competing demands of 
resiliency, power, performance, cost, etc. 
– Application scientists need tools to manage limited resources 

• End-to-End design for application resilience 

• ABFT, C/R, etc 

– Architects need tools to design next generation systems 

• How many application data structures need double chipkill memory protection? At what cost? 

• We propose a new metric: the data vulnerability factor (DVF) 
– Prototyped DVF using Aspen performance modeling language 

– Must classify memory access patterns 

– Demonstrate use of DVF on several algorithms 

• Initial results appear promising but more work remains 



3 

GPU Users want/demand no-ECC! 

 

R.C. Walker and R.M. Betz, “An investigation of the effects of error correcting code on GPU-accelerated molecular dynamics 

simulations,” Proc. Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery, 2013, pp. 8,  



4 

BIFIT Results (S3D) 

Observation: the global data objects with fault injected are responsible for most of the abort errors 

throughout the application execution 

D. Li, J.S. Vetter, and W. Yu, “Classifying Soft Error Vulnerabilities in Extreme-Scale Scientific Applications Using a Binary 

Instrumentation Tool,” in SC12: ACM/IEEE International Conference for High Performance Computing, Networking, Storage, 

and Analysis. Salt Lake City, 2012 

• 1000s of executions to cover 
statistically significant sample 

• Limited capability to change 
architecture, algorithm 



5 

Notional Future Architecture 

Interconnection 

Network 



7 

Current status 

• Applications scientists can (need to) provide valuable input about 
resiliency requirements 

– Application usage scenarios: ensembles, MC 

– Employ ABFT, C/R, etc 

 

• Multimode memory systems will be the norm in coming years 

– ECC (none, double chipkill), Persistence, Performance 

 

• Current methods (i.e., fault-injection) can be useful but are often too 
expensive and inflexible 



A new methodology: 

 

Data Vulnerability 

Metric 



9 

Data Vulnerability Factor: Why a new metric and 

methodology? 

• Analytical model of resiliency that includes important features of 
architecture and application 

– Fast 

– Flexible 

• Balance multiple design dimensions 

– Application requirements 

– Architecture (memory capacity and type) 

• Focus on main memory initially 

• Prioritize vulnerabilities of application data 

L. Yu, D. Li et al., “Quantitatively modeling application resilience with the data vulnerability factor (Best Student Paper Finalist),” in 

SC14: International Conference for High Performance Computing, Networking, Storage and Analysis. New Orleans, Louisiana: 

IEEE Press, 2014, pp. 695-706, 10.1109/sc.2014.62. 



10 

DVF Defined 

 

𝑁𝑒𝑟𝑟𝑜𝑟 = 𝐹𝐼𝑇 ∗ 𝑇 ∗ 𝑆𝑑  

Hardware Failure Rate ( 𝐹𝐼𝑇 ) Execution Time ( 𝑇 ) Footprint Size ( 𝑆𝑑 ) 

Hardware Effects  Number of Errors ( 𝑵𝒆𝒓𝒓𝒐𝒓 )   

Hardware Access Pattern 

Application Effects  Number of Hardware Accesses ( 𝑵𝒉𝒂 )   

𝑁ℎ𝑎 Hardware Access Pattern 

Data Structure Vulnerability →  𝐷𝑉𝐹𝑑 = 𝑁𝑒𝑟𝑟𝑜𝑟 ∗ 𝑁ℎ𝑎 

Application Vulnerability →  𝐷𝑉𝐹𝑎 =  𝐷𝑉𝐹𝑑𝑖
𝑛
𝑖=1  

Hardware Access Pattern 

Application Effects  Number of Hardware Accesses ( 𝑵𝒉𝒂 )   
We focus on a specific hardware 

component, the main memory, in this work 

Larger DVF indicates higher vulnerability, 
and vice versa 



11 

Implementing DVF 

• Extend Aspen performance modeling language 

• Specify memory access patterns 

• Combine error rates with memory regions and performance 

• Assign DVF to each application memory region, Sum for application 

 



Brief Introduction to 

Aspen 

12 



15 

Prediction Techniques Ranked 



16 

Aspen Design Flow  

Creation 

• Manual for future applications 

• Static analysis via compilers 

• Historical 

• Empirical 

Use 

• Interactive tools for graphs, queries 

• Design space optimization 

• Drive simulators 

• Feedback to runtime systems 

Representation in Aspen 

• Modular 

• Sharable 

• Composable 

• Reflects prog structure 

Existing models for MD, UHPC CP 1, Lulesh,  

3D FFT, CoMD, VPFFT, … 

Source code 

Aspen code 

K. Spafford and J.S. Vetter, “Aspen: A Domain Specific Language for Performance Modeling,” in SC12: ACM/IEEE International Conference for High Performance 

Computing, Networking, Storage, and Analysis, 2012 



18 

Creating Aspen Models 

  

S. Lee, J.S. Meredith, and J.S. Vetter, “COMPASS: A Framework for Automated Performance Modeling and Prediction,” in ACM International 

Conference on Supercomputing (ICS). Newport Beach, California: ACM, 2015, 10.1145/2751205.2751220. 



19 

Simple MM example generated from COMPASS 

Original Source 

 

Compiler-generated Aspen 

 



20 

LULESH in Aspen 

 



21 

LULESH – runtime optimizations 

 



Extending Aspen for 

DVF 



23 

 

 

 

 

 

 

 

• Aspen Extension 

– Grammar & Syntax for hardware vulnerability and targeted data structures 

– Compiler 

Extended Aspen Model 

Resilience Modeling Workflow 

 

Hardware Failure Rate 

Cache Configuration 

Hardware Information 

Size 

Data Structure Information 

Stride Access Pattern 

Template Other Parameters 

E
x
te

n
d
e
d
 A

s
p
e
n
 C

o
m

p
ile

r 

Execution 
Time 

Number of 
Errors 

Number of 
Memory 
Access 

DVF 

A
s
p
e
n
 C

o
m

p
ile

r 

Aspen Model 

Application  
Information 

Architectural 
Information 

Extended Aspen 

Aspen 



24 

•  Challenges 

–  We need to consider the caching effects 

• Data in higher levels of memory is ‘protected’ 

• Goals  

– We must maintain the successful paradigm of Aspen 

•  No detailed application source code   

•  Very limited architecture information – use simple cache model 

•  Fast exploration on various options 

–  We have to connect data semantics and memory accesses 

•  Counting number of memory accesses based on probability analysis 

 

Counting Main Memory Accesses 

 



26 

•  Streaming access pattern 

–  E.g., vector multiplication 

•  Random access pattern 

–  E.g., N-body simulation and Monte Carlo simulation 

•  Template-based access pattern 

–  E.g., structured multi-grid 

•  Data reuse pattern 

–  E.g., conjugate gradient method 

 

Memory Access Patterns Classification 

 



34 

An Example of Aspen Program for DVF 

 procedure VM(A,B,C) 
    for i  1, 1000 do 
        C[i]  C[i] + A[i*4] * B[i*8] 
    end for 
end procedure 

Pseudocode 

kernel vecmul { 
    execute mainblock2 [1] 
    { 
    flops [2*(n^3)] as sp, fmad, simd 
    access {1000} from {matA} as stream(4,16) 
    access {4000} from {matB} as stream(4,32) 
    access {8000} from {matC} as stream(4,4) 
    } 
} 

Extended Aspen Statements  

Resilience Statements: 
    Footprint Sizes: 
        Int: 16,000 
    Data Structures: 
        Ident: matA 
    Access Pattern: Stream 
        Int: 4 
        Int: 16 
Resilience Statements: 
    Footprint Sizes: 
        Int: 16,000 
    Data Structures: 
        Ident: matA 
    Access Pattern: Stream 
        Int: 4 
        Int: 16 
Resilience Statements: 
    Footprint Sizes: 
        Int: 16,000 
    Data Structures: 
        Ident: matA 
    Access Pattern: Stream 
        Int: 4 
        Int: 16 
 

Syntax Tree 

Data structure A: 
Number of errors: 30,400 
Number of memory accesses: 51 
DVF: 105504e+06 
…  

Resilience Modeling Results 

Extended 

Parser 

Extended 

Complier 



Evaluation 



36 

Algorithm Name 
Computational 

Method Class 

Major Data 

Structures 

Memory Access 

Patterns 

Example 

Benchmarks 

Vector Multiplication (VM) Dense linear algebra A, B, and C Streaming Homemade code 

Conjugate Gradient (CG) Sparse linear algebra A, x, p and r 
Template + Reuse  

+ Streaming 
NPB CG 

Barnes-Hut simulation 

(NB) 
N-body method T and P Random Online code 

Multi-grid (MG) Structured grids R Template-based NPB MG 

1D FFT (FT) Spectral methods A Template-based NPB FT 

Monte Carlo simulation 

(MC) 
Monte Carlo G and E Random XSBench 

 

Six Computational Kernels 

 



39 

 

39 

DVF Results 



40 

Use Case 1: Quantifying the Impact of Algorithm 

Optimization 

•  Conjugate Gradient (CG) 

 

–  Providing numeric solutions to 
linear equations 

 

–  Having mainly four data 
structures 

•  Preconditioned Conjugate 
Gradient (PCG) 

 

–  One of the optimized versions of 
CG 

 

–  Adding extra data structures 

 

–  Faster convergence 



41 

 

 

 

 

 

 

 

– In PCG, the performance improvement and larger working set size have 
contradicting contributions to DVF  

– We can achieve joint optimization of performance and resilience 

 

Use Case 1: Quantifying the Impact of Algorithm 

Optimization 

M
o
re

 v
u
ln

e
ra

b
le

 



44 

•  DVF is applicable to other hardware components 

–  E.g., Cache hierarchy 

–  E.g., Register file 

–  E.g., Network interface card 

 

•  DVF can benefit the designs of a variety of resilience mechanisms 

–  E.g., Checkpointing 

–  E.g., Algorithm-based fault tolerance methods (ABFT) 

 

•  DVF makes model integration easier 

–  Exploring the tradeoff between performance, resilience and power 

 

DVF Possibilities 

 



45 

• We introduce a novel resilience metric, DVF, to help with design of 
future architectures and applications 

• We extended Aspen - a domain specific language - for resilience 
modeling 

• Our method is applied to scientific applications from six computational 
domains 

• Our resilience modeling can be applied to various optimization 
problems 

Conclusions 

 



46 

Acknowledgements 

• Contributors and Sponsors 

– Future Technologies Group: http://ft.ornl.gov 

– US Department of Energy Office of Science 

• DOE Vancouver Project: https://ft.ornl.gov/trac/vancouver  

• DOE Blackcomb Project: https://ft.ornl.gov/trac/blackcomb  

• DOE ExMatEx Codesign Center: http://codesign.lanl.gov  

• DOE Cesar Codesign Center: http://cesar.mcs.anl.gov/  

• DOE Exascale Efforts: http://science.energy.gov/ascr/research/computer-
science/  

– Scalable Heterogeneous Computing Benchmark team: http://bit.ly/shocmarx  

– US National Science Foundation Keeneland Project: 
http://keeneland.gatech.edu 

– US DARPA 

– NVIDIA CUDA Center of Excellence 

http://ft.ornl.gov/
https://ft.ornl.gov/trac/vancouver
https://ft.ornl.gov/trac/blackcomb
http://codesign.lanl.gov/
http://cesar.mcs.anl.gov/
http://science.energy.gov/ascr/research/computer-science/
http://science.energy.gov/ascr/research/computer-science/
http://science.energy.gov/ascr/research/computer-science/
http://bit.ly/shocmarx
http://keeneland.gatech.edu/

