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Loop Perforation

Problem

Program Takes Too Long To Run
(Or Consumes Too Much Energy)



Solution
[Misailovic et. al. ICSE 2010, Sidiroglou et. al. FSE 2011] 

Profile program

Find loops that take most time

Perforate the loops

• Don’t execute all loop iterations

• Instead, skip some iterations

for (i = 0; i < n; i++) { … }



Profile program

Find loops that take most time

Perforate the loops

• Don’t execute all loop iterations

• Instead, skip some iterations

for (i = 0; i < n; i++) { … }

for (i = 0; i < n; i += 2) { … }

Solution
[Misailovic et. al. ICSE 2010, Sidiroglou et. al. FSE 2011] 



Profile program

Find loops that take most time

Perforate the loops

• Don’t execute all loop iterations

• Instead, skip some iterations

for (i = 0; i < n; i++) { … }

for (i = 0; i < n; i += 4) { … }

Solution
[Misailovic et. al. ICSE 2010, Sidiroglou et. al. FSE 2011] 



Common Reaction

OK, I agree program should run faster

But you can’t do this 

Because you will get wrong result!



Our Response

OK, I agree program should run faster

But you can’t do this 

Because you will get wrong result!

We absolutely can do this

You won’t get the wrong result

You may get a different result







Key Points

Need to find right loops to perforate

Testing can identify viable loops

Converging loops

Distance metrics for heuristic searches

When you find right loops to perforate, can get

Significant time/energy savings (6X)

Acceptable inaccuracy



What This Talk Is About

Approximation to Reduce Energy Consumption

Sasa Misailovic

Approximate 

Computation

Phillip Stanley-Marbell

Approximate 

Data



OLED Displays Are Increasingly Popular

LG Samsung Apple

Smart Watches with OLED Displays:

Tablets with OLED Displays:



OLED Displays Consume Lots of 

Power

ARM Cortex-M0 Processor: 0.3-18 mWatts

Intel Atom 21000 6 Watts

120x120 OLED Display: 8.5 Watts



(39.63% ↓)

(38.53% ↓)

(42.64% ↓)

(18.70% ↓)

(18.38% ↓)

(20.05% ↓)

(22.75% ↓)

(22.20% ↓)

(24.08% ↓)

(36.30% ↓)

(35.24% ↓)

(39.12% ↓)

(54.03% ↓)

(52.59% ↓)

(57.54% ↓)



Original 7328.02 

mW

Shape transform 3

6753.95 mW

(7.8% savings)

Shape transform 1

5927.78 mW

(19.1% savings)

Shape transform 2

8514.26 mW

(-16.2% savings)



Original

1647.3 mW

(0.0% savings)

Original

7716.36 mW

(0.0% savings)

Color Transform

1319.48 mW

(19.9% savings)

Color Transform

7616.04 mW

(1.3% savings)

Color + 0.88x area

1123.46 mW

(31.8% savings)

Color + 0.88x area

7924.70 mW

(-2.7% savings)

Color + 0.72x area

930.72 mW

(43.5% savings)

Color + 1.4x area

6358.28 mW

(17.6% savings)



On OLED displays, blue uses almost twice power of green
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Numbers From On-Board Current Measurements

Wrote device drivers to measure current driving display

Characterized power for all colors



Color Transforms

uc[i]
vc[i]
α
β
λ

Transformed pixel value for i th pixel on c th channel

Original value of i th pixel on c th channel

Parameter from power model

Parameter from power model

Power-vs-distance tradeoff parameter

Closed-form formula for color transformation

(power minimization under a distance constraint)

Power model used in minimization formulation 

(calibrated with measurement data)

Where

Characterize Tradeoff Curve: 

Start with an image and a distance in an underlying color space 

Find a new image within that distance that minimizes power



Key Question

Relationship between λ and human perception

Use Amazon Mechanical Turk

Discretize λ
Generate λ variants of pictures

Mechanical Turk workers 

rate pictures (0-3)

370 People, 2636 picture ratings

Result: f

perceived goodness = f(λ)
choose λ such that f(λ) = 2, use that λ



(39.63% ↓)

(38.53% ↓)

(42.64% ↓)

For λ = 3.28,

CIELAB space,

get 33%-50%

power savings



Implemented These Ideas in Crayon System 

Crayon Software Architecture

Cairo is a standard, widely-used graphics API 

Firefox, Graphviz, Poppler, …

CrayonGen intercepts Cairo calls, generates Crayon IR

Capture layering information 

Shape optimization for drawing operations

Closed-form color transformation

Crayon implementation is about12K LOC

Cairo-specific code is about 232 LOC



Crayon via Cairo Example
2

2

int

main (int argc, char * argv[])

{

cairo_surface_t *    surface;

cairo_t *            cr;

surface  = cairo_image_surface_create(CAIRO_FORMAT_RGB24,

96, 96);

cr       = cairo_create(surface);

cairo_set_line_width(cr, DRAWING_LINE_WIDTH);

cairo_scale(cr, 96, 96);

draw_mit_logo(cr,

/* mtidot_red   */ MIT_LOGO_MITLIGHTGRAY_R,

/* mtidot_green */ MIT_LOGO_MITLIGHTGRAY_G,

/* mtidot_blue  */ MIT_LOGO_MITLIGHTGRAY_B,

/* istem_red    */1.0,

/* istem_green  */ 1.0,

/* istem_blue   */ 1.0);

cairo_surface_flush(surface);

cairo_surface_write_to_png (surface, "mitlogo.png");

cairo_destroy(cr);

cairo_surface_destroy(surface);

return 0;

}

void

draw_mit_logo(cairo_t *cr, double mtidot_red, double 

mtidot_green, double mtidot_blue, double 

istem_red, double istem_green, double 

istem_blue)

{

/* M: */

cairo_set_source_rgb(cr, mtidot_red, mtidot_green,

mtidot_blue);

cairo_rectangle(cr,

/*    x    */ 0.0,

/*    y    */ 0.0, 

/*  width  */ MIT_LOGO_BAR_WIDTH,

/*  height */ MIT_LOGO_LETTER_HEIGHT);

cairo_fill(cr);

cairo_rectangle(cr,

/*    x    */ MIT_LOGO_BAR_WIDTH+MIT_LOGO_BAR_SPACING,

/*    y    */ 0.0,

/*  width  */ MIT_LOGO_BAR_WIDTH,

/*  height */ 3*MIT_LOGO_BAR_WIDTH);

cairo_fill(cr);

cairo_rectangle(cr, 

/*    x    */ 2*(MIT_LOGO_BAR_WIDTH+MIT_LOGO_BAR_SPACING),

/*    y    */ 0.0, 

/*  width  */ MIT_LOGO_BAR_WIDTH,

/*  height */ MIT_LOGO_LETTER_HEIGHT);

cairo_fill(cr);

…

}



Sensor Power Consumption



Reduced Power Sensor Operation

L3G4200D Manual: Run sensor at 1.8V-3.6V

Us: Why would we do this?

We can save lots of power if reduce V!

Power = C L3G4200D V2

L3G4200D 

Gyro Sensor



Sensor Still Works (Mostly)!

L3G4200D 

Gyro Sensor



And We Save Power

L3G4200D 

Gyro Sensor



Moving Sensor Data To Processor Costs Energy

To enable tighter integration and less crosstalk, serial links are typical:

Every 1→ 0 or 0 → 1 transition costs energy!



Reducing Transitions

Let’s say we decide to tolerate m error

Why not just make Log2(m) bits all 0 or all 1?



Encoding Algorithm Overview

Phase 1: Identify transition positions and cumulative run counts

Moving left from LSB, transition position set is {5, 6}

Run of 0s at bit position 5 will have contribution 63 if flipped

Run of 1s at bit position 6 will have contribution 64 if flipped

0 1 0 0 0 0 0 0

▲▲

Position 0Position 7
▲ ▲

◀︎ Transitions

Phase 2: Find runs at that can be flipped in opposite directions

➊ Start from first transition seen, moving right from MSB

➋ Can complement removing transition at position 6 (with 

contribution -64) with lower-order run of 0s (contribution +63)

– Number of transitions is reduced from 2 to 1

– Resulting deviation is 1

0 0 1 1 1 1 1 1

▲

Position 0Position 7
▲ ▲

◀︎ Transitions

Problem: Given input s=64, find an encoded value t, such that |s-t| ≤ m, for m = 16,

and for which  #δ(t) < #δ(s)



Great, But How Does it Affect Real End-to-End Applications?
3

0



Great, But How Does it Affect Real End-to-End Applications?
3

1

➊ ➋ ➌



Great, But How Does it Affect Real End-to-End Applications?
3

2

Without Transition Reduction With Transitions Reduced By 54%

Reports 19 steps Reports 20 steps

Maximal activity axis

Low-pass filter

Extremal-value marking

➊

➋

➌

Maximal activity axis

Low-pass filter

Extremal-value marking

➊

➋

➌



Approximate Computation

Chisel: Reliability- and Accuracy-Aware Optimization of 

Approximate Computational Kernels

Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, Martin Rinard

(OOPSLA 2014 Best Paper Award)



Image Scaling



f ( )

Image Scaling: Interpolation Function

=



Interpolation Function

int interpolation(int dst_x, int dst_y, int src[][])
{

int x = src_location_x(dst_x, src), 
y = src_location_y(dst_y, src);

int up    = src[y - 1][x],
down  = src[y + 1][x],
left  = src[y][x - 1], 
right = src[y][x + 1]; 

int val = up + down + left + right;

return 0.25 * val;
}



Approximate Hardware Model

Approximate Units (ALUs and Main/Cache Memories)

• May produce incorrect results

• Hardware specification contains savings and reliability



Run Function on Approximate Hardware

int interpolation(int dst_x, int dst_y, int src[][])
{

int x = src_location_x(dst_x, src), 
y = src_location_y(dst_y, src);

int up    = src[y -. 1][x],
down  = src[y +. 1][x],
left  = src[y][x -. 1], 
right = src[y][x +. 1]; 

int val = up +. down +. left +. right;

return 0.25 *. val;
}



Run Function on Approximate Hardware

int interpolation(int@ dst_x, int@ dst_y, int@ src[][])
{

int@ x = src_location_x(dst_x, src), 
y = src_location_y(dst_y, src);

int@ up    = src[y -. 1][x],
down  = src[y +. 1][x],
left  = src[y][x -. 1], 
right = src[y][x +. 1]; 

int@ val = up +. down +. left +. right;

return 0.25 *. val;
}



Function and Program Accuracy

20% 40% 60% 80% 99% 99.9%90%

Probability 𝒑 with which interpolation kernel 

produces a correct pixel



20% 40% 60% 80% 99% 99.9%90%

Produce a correct pixel with probability > 0.99

Function’s and Program’s Accuracy



Produce a correct pixel with probability at least 0.99

int interpolation(int dst_x, int dst_y, int src[][])
{

int x = src_location_x(dst_x, src), 
y = src_location_y(dst_y, src);

int up    = src[y - 1][x],
down  = src[y + 1][x],
left  = src[y][x - 1], 
right = src[y][x + 1];

int val = up +. down +. left +. right;

return 0.25 *. val;
}



Produce a correct pixel with probability at least 0.99

int interpolation(int dst_x, int dst_y, int@ src[][])
{

int x = src_location_x(dst_x, src), 
y = src_location_y(dst_y, src);

int up    = src[y - 1][x],
down  = src[y + 1][x],
left  = src[y][x - 1], 
right = src[y][x + 1];

int@ val = up + down + left + right;

return 0.25 * val;
}



Produce a correct pixel with probability at least 0.99

int interpolation(int dst_x, int dst_y, int src[][])
{

int x = src_location_x(dst_x, src), 
y = src_location_y(dst_y, src);

int up    = src[y - 1][x],
down  = src[y + 1][x],
left  = src[y][x - 1], 
right = src[y][x + 1];

int@ val = up + down + left + right;

return 0.25 *. val;
}

How to find approximate function 

with maximum energy savings?



Hardware ArchitectSoftware Developer

Program
Accuracy

Specification

Approximate

Hardware

Specification

Chisel

Automates placement of 

• approximate arithmetic operations 

• variables in approximate memory

Approximate function:

Maximizes energy savings

Satisfies accuracy specifications



Accuracy Specification

Reliability Function computes result correctly 

with probability > 0.99

Absolute Error Absolute error of function’s result < 2.0

Reliability and 

Absolute Error

Absolute error of function’s result < 2.0

with probability > 0.99



int < 𝟎. 𝟗𝟗 ∗ 𝐑 𝚫𝒙 = 𝟎,𝚫𝒚 = 𝟎, 𝚫𝐬𝐫𝐜 = 𝟎 >

interpolation(int x, int y, int src[][]);

Reliability

degradation

Reliability Specification 

The function computes result correctly 

with probability at least 𝟎. 𝟗𝟗



int < 𝟎. 𝟗𝟗 ∗ 𝐑 𝚫𝒙 = 𝟎,𝚫𝒚 = 𝟎, 𝚫𝐬𝐫𝐜 = 𝟎 >

interpolation(int x, int y, int src[][]);

Reliability Specification 

Parameter

Reliability
Reliability

degradation

Probability that the parameters have 

correct values before function starts executing

(facilitates function composition)



int < 𝟎. 𝟗𝟗 ∗ 𝐑 𝚫𝒙 = 𝟎,𝚫𝒚 = 𝟎, 𝚫𝐬𝐫𝐜 = 𝟎 >

interpolation(int x, int y, int src[][]);

Reliability Specification 

Parameter

Reliability
Reliability

degradation

• Reliability factor: 𝐑(𝚫𝒗𝟏 ≤ 𝒅𝟏, … , 𝚫𝒗𝒏 ≤ 𝒅𝒏)

𝜟𝒗 ≡ 𝒗𝒆𝒙𝒂𝒄𝒕 − 𝒗𝒂𝒑𝒑𝒓𝒐𝒙 Numerical bound



Function Optimization Problem

Find Function Configuration 𝒒:

𝐦𝐚𝐱 EnergySavings (𝒒)

Reliability 𝒒 ≥ ReliabilityBound

AbsoluteError 𝒒 ≤ ErrorBound

Analysis of the Function Specifications

𝐬. 𝐭.



Binary vector 𝒒 = (𝑞1, 𝑞2, … , 𝑞𝑛)

Variable Declarations:

• 𝒒𝒊 - if 1, variable is stored in approximate memory

if 0, variable is stored in exact memory

Arithmetic Operations:

• 𝒒𝒊 - if 1, the operation is approximate, 

if 0, the operation is exact

Function Configuration



Function Configuration

int interpolation(int dst_x, int dst_y, int src[][])
{

int x = src_location_x(dst_x, src); 

int y = src_location_y(dst_y, src);

int up    = src[y - 1][x];

int down  = src[y + 1][x];

int left  = src[y][x - 1]; 

int right = src[y][x + 1];

int val = up + down + left + right;

return 0.25 * val;

}



Function Configuration

int interpolation(int𝒒𝒅𝒔𝒕𝒙 dst_x, int𝒒𝒅𝒔𝒕𝒚 dst_y, int𝒒𝒔𝒓𝒄 src[][])

{

int𝒒𝒙 x = src_location_x(dst_x, src); 

int𝒒𝒚 y = src_location_y(dst_y, src);

int𝒒𝒖𝒑 up   = src[y - 1][x];

int𝒒𝒅𝒐𝒘𝒏 down  = src[y + 1][x];

int𝒒𝒍𝒆𝒇𝒕 left  = src[y][x - 1]; 

int𝒒𝒓𝒊𝒈𝒉𝒕 right = src[y][x + 1];

int𝒒𝒗𝒂𝒍 val = up + down + left + right;

return 0.25 * val;

}



Function Configuration

int interpolation(int𝒒𝒅𝒔𝒕𝒙 dst_x, int𝒒𝒅𝒔𝒕𝒚 dst_y, int𝒒𝒔𝒓𝒄 src[][])

{

int𝒒𝒙 x = src_location_x(dst_x, src); 

int𝒒𝒚 y = src_location_y(dst_y, src);

int𝒒𝒖𝒑 up   = src[y -𝒒𝟕 1][x];

int𝒒𝒅𝒐𝒘𝒏 down  = src[y +𝒒𝟔 1][x];

int𝒒𝒍𝒆𝒇𝒕 left  = src[y][x -𝒒𝟓 1]; 

int𝒒𝒓𝒊𝒈𝒉𝒕 right = src[y][x +𝒒𝟒 1];

int𝒒𝒗𝒂𝒍 val = up +𝒒𝟏 down +𝒒𝟐 left +𝒒𝟑 right;

return 0.25 *𝒒𝟎 val;
}

Each assignment of vector 𝒒 denotes 

a different approximate function 



• Efficiently represent reliability of all approximate 

versions of the function

• Construct constraints that describe those 

approximate functions that satisfy specification

Reliability Analysis



Approximate hardware specification:

• Reliability of arithmetic operations: 𝒓𝒐𝒑 ∈ 𝟎, 𝟏

• Reliability of memory reads and writes: 𝒓𝒓𝒅, 𝒓𝒘𝒓 ∈ 𝟎, 𝟏

operator (*) = 0.9999; 

memory approx {rd = 0.99998, wr = 0.99999};   

Analysis:

• Sound static analysis, operates backward

• Constructs symbolic expressions that characterize 

reliability of traces

Reliability Analysis



Reliability Analysis

Statement return val * 0.25;

Exact Statement

1.0

1.0

Read val

Return result

Multiply

Approximate Statement

𝑟𝑟𝑑

𝑟𝑡𝑖𝑚𝑒𝑠

1 − 𝑟𝑟𝑑

1 − 𝑟𝑡𝑖𝑚𝑒𝑠

val and * approximateval and * exact



Reliability Analysis

Statement return val * 0.25;

Exact Statement Approximate Statements

val and * 

approximate

val

approximate

* 

approximate

Statement

reliability 𝟏. 𝟎 𝒓𝒓𝒅 ⋅ 𝒓𝒕𝒊𝒎𝒆𝒔 𝒓𝒓𝒅 𝒓𝒕𝒊𝒎𝒆𝒔

val and * 

exact



Reliability Analysis

Statement return val * 0.25;

qval

q*

Encode approximation choice:

• Variable declaration:  int val;

• Multiplication:    val *   0.25;



Encode approximation choice:

• Variable declaration:  int val;

• Multiplication:    val *   0.25;

Reliability Analysis

Statement return val * 0.25;

Reliability

Expression 𝑟𝑟𝑑
𝑞𝑣𝑎𝑙
⋅ 𝑟𝑡𝑖𝑚𝑒𝑠

𝑞∗
⋅ R Δval = 0

qval

q*



Reliability Analysis

Statement return val * 0.25;

Reliability

Expression

Reliability of reading val from 

either exact or approximate memory: 

𝒓𝒓𝒅
𝟎 = 𝟏. 𝟎 𝒓𝒓𝒅

𝟏 = 𝒓𝒓𝒅

𝒓𝒓𝒅
𝒒𝒗𝒂𝒍
⋅ 𝑟𝑡𝑖𝑚𝑒𝑠

𝑞∗
⋅ R Δval = 0



Reliability Analysis

Statement return val * 0.25;

Reliability

Expression

Reliability of either exact or 

approximate multiplication

𝑟𝑟𝑑
𝑞𝑣𝑎𝑙
⋅ 𝒓𝒕𝒊𝒎𝒆𝒔

𝒒∗
⋅ R Δval = 0



Reliability Analysis

Statement return val * 0.25;

Reliability

Expression

Probability that previous statements 

computed val correctly 

𝑟𝑟𝑑
𝑞𝑣𝑎𝑙
⋅ 𝑟𝑡𝑖𝑚𝑒𝑠

𝑞∗
⋅ 𝐑 𝚫𝐯𝐚𝐥 = 𝟎



int interpolation(int𝒒𝒅𝒔𝒕𝒙 dst_x, int𝒒𝒅𝒔𝒕𝒚 dst_y, int𝒒𝒔𝒓𝒄 src[][]) 

{

return val *𝒒
∗
0.25;

}

Interpolation Function

𝑟𝑟𝑑
𝑞𝑣𝑎𝑙
⋅ 𝑟𝑡𝑖𝑚𝑒𝑠

𝑞∗
⋅ 𝐑 𝚫𝐯𝐚𝐥 = 𝟎



int interpolation(int𝒒𝒅𝒔𝒕𝒙 dst_x, int𝒒𝒅𝒔𝒕𝒚 dst_y, int𝒒𝒔𝒓𝒄 src[][]) 

{

int𝒒𝒗𝒂𝒍 val = up +𝒒𝟏 down +𝒒𝟐 left +𝒒𝟑 right;

return val *𝒒
∗
0.25;

}

Interpolation Function

𝑟𝑟𝑑
𝑞𝑣𝑎𝑙
⋅ 𝑟𝑡𝑖𝑚𝑒𝑠

𝑞∗
⋅ 𝐑 𝚫𝐯𝐚𝐥 = 𝟎

⋅ 𝒓𝒑𝒍𝒖𝒔
𝒒𝟏+𝒒𝟐+𝒒𝟑

⋅ 𝒓𝒓𝒅
𝒒𝒖𝒑+𝒒𝒅𝒐𝒘𝒏+𝒒𝒍𝒆𝒇𝒕+𝒒𝒓𝒊𝒈𝒉𝒕

⋅ 𝐑 𝚫𝐮𝐩 = 𝟎, 𝚫𝐝𝐨𝐰𝐧 = 𝟎, 𝚫𝐥𝐞𝐟𝐭 = 𝟎, 𝚫𝐫𝐢𝐠𝐡𝐭 = 𝟎

𝑟𝑟𝑑
𝑞𝑣𝑎𝑙
⋅ 𝑟𝑡𝑖𝑚𝑒𝑠

𝑞∗



Reliability Expression

𝑟1
𝒒𝟏 ⋅ 𝑟2

𝒒𝟐 ⋅ … ⋅ 𝑟𝑛
𝒒𝒏 ⋅ R  

𝑗∈𝑃𝑎𝑟𝑎𝑚

Δ𝑣𝑗

Function’s Reliability Expression:

𝑃𝑝𝑎𝑟𝑎𝑚

Probability operations 

executed reliably

(for all approximate versions

of the function)

Probability parameters 

have correct values

at function start



Reliability Constraint

𝑟𝑠𝑝𝑒𝑐 ⋅ R 𝑃𝑠𝑝𝑒𝑐 ≤ 𝑟1
𝒒𝟏 ⋅ 𝑟2

𝒒𝟐 ⋅ … ⋅ 𝑟𝑛
𝒒𝒏 ⋅ R 𝑃𝑝𝑎𝑟𝑎𝑚

Relate developer’s specification and analysis result:



Reliability Constraint

Can Immediately Solve

𝑟𝑠𝑝𝑒𝑐 ≤ 𝑟1
𝒒𝟏 ⋅ 𝑟2

𝒒𝟐 ⋅ … ⋅ 𝑟𝑛
𝒒𝒏

R 𝑃𝑠𝑝𝑒𝑐 ≤ R 𝑃𝑝𝑎𝑟𝑎𝑚

and 



Reliability Constraint

𝑟𝑠𝑝𝑒𝑐 ≤ 𝑟1
𝒒𝟏 ⋅ 𝑟2

𝒒𝟐 ⋅ … ⋅ 𝑟𝑛
𝒒𝒏

R 𝑃𝑠𝑝𝑒𝑐 ≤ R 𝑃𝑝𝑎𝑟𝑎𝑚

and 

𝑃𝑠𝑝𝑒𝑐 ⇒ 𝑃𝑝𝑎𝑟𝑎𝑚



Reliability Constraint

𝑟𝑠𝑝𝑒𝑐 ≤ 𝑟1
𝒒𝟏 ⋅ 𝑟2

𝒒𝟐 ⋅ … ⋅ 𝑟𝑛
𝒒𝒏

Denotes approximate function versions that 

satisfy the developer’s specification



Reliability Constraint
for the optimization problem

log 𝑟𝑠𝑝𝑒𝑐 ≤ 𝒒𝟏 ⋅ log 𝑟1 + 𝒒𝟐 ⋅ log 𝑟2 +⋯+ 𝒒𝒏 ⋅ log(𝑟𝑛)

Denotes approximate function versions that 

satisfy the developer’s specification



Reliability and Control Flow

Conditionals

Bounded

Loops

Constraints for each program path

Analysis removes redundant constraints
(most constraints can be removed - OOPSLA ’13)

Statically known loop bound

Analysis unrolls loop

Optimization

Granularity

Optimize blocks of code instead of 

individual instructions



Choose between alternative implementations:

int <1.00*R Δ𝑥 = 0 > f(float x)

int <0.99*R Δ𝑥 = 0 > f’(float x)

• Reliability degradation: 𝟎. 𝟗𝟗 𝒒𝒇

• Enables composition of approximate 

components

Reliability and Function Calls



Function Optimization Problem

Find Function Configuration 𝒒:

𝐦𝐚𝐱 EnergySavings (𝒒)

Reliability 𝒒 ≥ ReliabilityBound

AbsoluteError 𝒒 ≤ ErrorBound







Function Optimization Problem

Find Function Configuration 𝒒:

𝐦𝐚𝐱 EnergySavings (𝒒)

Reliability 𝒒 ≥ ReliabilityBound

AbsoluteError 𝒒 ≤ ErrorBound









Energy Savings Analysis

Profile information: 

• Collects traces from running representative inputs

Analysis:

• Estimates savings for instructions and variables from traces

𝒒ℓ ⋅ 𝐶𝑜𝑢𝑛𝑡ℓ ⋅ 𝑆𝑎𝑣𝑖𝑛𝑔𝐴𝐿𝑈

instruction

𝒒𝒎 ⋅ 𝑆𝑖𝑧𝑒𝑚 ⋅ 𝑆𝑎𝑣𝑖𝑛𝑔𝑀𝐸𝑀

variable



Energy Savings Analysis

Profile information: 

• Collects traces from running representative inputs

Analysis:

• Estimates savings for instructions and variables from traces

Approximate hardware specification:

• Relative savings for operations and memories

• Percentage of system energy that ALU and memory consume

instruction

𝑐𝐴𝐿𝑈  

ℓ∈𝐼𝑛𝑠𝑡𝑟

𝒒ℓ ⋅ 𝐶𝑜𝑢𝑛𝑡ℓ ⋅ 𝑆𝑎𝑣𝑖𝑛𝑔𝐴𝐿𝑈 𝑐𝑀𝐸𝑀  

𝒎∈𝑉𝑎𝑟

𝒒𝒎 ⋅ 𝑆𝑖𝑧𝑒𝒎 ⋅ 𝑆𝑎𝑣𝑖𝑛𝑔𝑀𝐸𝑀+

variable



Function Optimization Problem

Find Function Configuration 𝒒:

𝐦𝐚𝐱 EnergySavings (𝒒)

Reliability 𝒒 ≥ ReliabilityBound

AbsoluteError 𝒒 ≤ ErrorBound











Find Function Configuration 𝒒:

𝐦𝐚𝐱 EnergySavings (𝒒)

Reliability 𝒒 ≥ ReliabilityBound

AbsoluteError 𝒒 ≤ ErrorBound









Kernel Optimization ProblemReduces to Integer Programming

Solve using off-the-shelf solvers (we use Gurobi)



Putting the Pieces Together for a Unified 

Optimization Framework

• Approximate Sensors,  Approximate Data

• Approximate Communication

• Approximate Memory, Computation

• Approximate Output



More Research

Approximation for Time/Energy Savings
• Outlier Detection/Correction [MIT TR 2014]

• Skipping Tasks [ICS 2006]

• Early Barrier Termination [OOPSLA 2007]

• Loop Perforation [ICSE 2010, FSE 2011, PLDI 2012]

• Dynamic Knobs [ASPLOS 2011]

• Synchronization Elimination [SPLASH 2012, HOTPAR 2013]

• Approximate Parallelization [ACM TOCS 2013]

• Accuracy/Reliability Guarantees [SAS 2011, PLDI 2012]

• Optimal Approximate Map/Fold Programs [POPL 2012]



Even More Research

Resilience Techniques to Obtain Immortal Programs

• Identification/hardening critical data/computation [ISSTA 2010]

• Surviving out of bounds accesses [ACSAC 2004, OSDI 2004]

• Repairing corrupt data structures [OOPSLA 2003, ICSE 2005]

• Eliminating memory leaks [ISMM 2007]

• Escaping infinite loops [ECOOP 2011, OOPSLA 2012]

• Recovering from null pointer/divide by zero errors [PLDI 2014]

Finding Security Vulnerabilities

• At API boundaries [ICSE 2009]

• Integer, buffer overflows [ASPLOS 2015]

Eliminating Security Vulnerabilities

• Input Rectification/Filtering [ICSE 2012, POPL 2014]

• Automatic Patch Generation [SOSP 2009, MIT TR 2015]

• Automatic Code Transfer [PLDI 2015]


