
C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Which is Easier to Program?

Companion Accelerator Node
Many-core Self-hosted Node

Multi-core Node

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Systems to be delivered in the next 4-5 years

● Companion accelerator Node sharing memory with host
●  Coral systems TB Delivered by IBM/Nvidia
●  AMD APU systems

● Many-core Node
●  Trinity and Cori systems TB Delivered next year

● Multi-core Node
●  Haswell/Broadwell/Skylake …..
●  ARM

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

High Level Comparisons
Companion
Accelerator

Many-Core Multi-Core

Number of
threads required

1000s 100s 10s

Number of MPI
Tasks/Node

1-4 4-30 4-32

SIMD Length
(64-Bit)

8-32 8 4-8

Memory
Hierarchy

Virtual/User
Controlled??

User Controlled NUMA

Cache
Architecture

Insufficient Could be an issue Well understood

Scalar
Performance

Very Poor or Host
– implies memory
movement

Poor Good

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Programming issues with Companion Accelerator

● Must do tremendous amount of threading – cannot be MPI
● Must SIMDize more code – Can we say Vectorization
● Scalar code on the accelerator is very slow, on the host

requires memory movement.
● How does the Memory manager work? Can the user

control data movement? Virtual Memory??
● Amount of registers/cache per MIMD processor is too

small

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Who Said this:

We don’t use Virtual Memory, you can’t fake what you
don’t have

Seymour Cray

Memory Management must be user controlled

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Programming issues with Many-core System

● Must do threading – all MPI will not work well, it will work
● Must not have scalar code in important areas – must

vectorize as much as possible
●  Ideally have parallel, Vectorizable loops
● Managing Memory Hierarchy will be a challenge
● Cache optimization within Memory Hierarchy will be a

challenge

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Programming issues with Multi-core System

● All MPI will still work –
●  The main reason MPI/OpenMP on the Node does not perform well is

that the OpenMP is poorly implemented. Most of the implementers do
not want it to win.

● Higher level caches become larger – while some
optimization can be performed, many take what they get

● Vectors become more important

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

ANSWER

1)  Multi-core Systems; but, you’ll pay more for power

2)  If you want a performance portable application, none are

Which is Easier to Program?

