
Fault Tolerant Programming Abstractions and Failure
Recovery Models for MPI Applications

Ignacio Laguna

Center for Applied Scientific Computing

Salishan Conference on High-speed Computing, Apr 27-30, 2015

LLNL-PRES-670002. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

< 2 >

We use MPI workloads to design future machines

MPI IS WIDELY USED, AND WILL CONTINUE TO BE…

75% CORAL tier-1 benchmarks use MPI
CORAL is the recent DOE procurement to deliver
next-generation (petaflops) supercomputers

46,600 Hits are returned by Google Scholar for
the term “message passing interface”

Many implementations are available
C/C++, Java, Matlab, Python, R, …

MPI is widely cited

MPI+X will remain a common programming model

< 3 >

MPI is the dominant “glue” for HPC applications

MOST NODE/PROCESS FAILURES SHOW UP IN MPI

Process
 Process
 Process
 Process

Node

MPI
 MPI
 MPI

Node
 Node

Node
 Node

MPI

MPI
MPI

MPI

Examples:

• Application error (bug)

• Hardware error (soft error)

From the MPI standard:
! “... after an error is detected, the state of MPI is

undefined”
! “MPI itself provides no mechanisms for handling

processor failures.”

MPI doesn’t provide guaranties about failure
detection and/or notifications

Resource manager kills the job (by default)

< 4 >

Failures are not an option in MPI

MPI DOES NOT PROVIDE FAULT TOLERANCE

< 5 >

WHY TO INVEST IN FAULT TOLERANCE IN MPI?

MPI will
continue to

be used

Nice layer
to detect
failures

No
resilience

abstractions
in the

standard

1 2 3

+ +

Solution?

< 6 >

Roadmap of the talk

PUZZLE PIECES OF THE PROBLEM

Problem Description

• Why adding FT to MPI is difficult?

• Challenges & areas of concern

Lessons Learned

• Where do we go from here?

• Summary

Approaches

• Current solutions to the problem

• Proposals in the MPI forum

Experimental Evaluation

• Modeling & simulation

• Early evaluation results

1
 2

3
4

< 7 >

The devil is on the details…

FIXING A FAILED MPI RANK TRANSPARENTLY IS HARD

Ideal fault-tolerance strategy:

Replace transparently a failed process

This is difficult to implement correctly and efficiently in MPI libraries

How to bring a new MPI process up-to-date?

How to handle in-transit messages and operations?

Where to re-inject control in the application?

1

2

3

Some implementation questions / considerations:

MPI programs don’t check for errors
Fault detection that rely on error codes would be hard to use

< 8 >

Reasoning about error propagation in a complex code is hard

MOST CODES ASSUME NO ERROR CHECKING

for$(...)$
$$err$=$MPI_Isend();,
$$if(err)recover();$
for$(...)$
$$err$=$MPI_Irecv();,
$$if(err)recover();$
$
err$=$MPI_Waitall();,
if(err)recover();$
err$=$MPI_Barrier();,
if(err)recover();$

Ideal world

for$(...)$
$$MPI_Isend();,
for$(...)$
$$MPI_Irecv();,
$
MPI_Waitall();,
MPI_Barrier();,

Real world

Most codes will recover from failures via checkpoint/restart

What failures to consider in the MPI standard?
!  Node / process failures?
!  Communication errors?
!  Silent errors?

Should the application continue executing after a failure? How?

!  Forward vs. backward recovery

Fault-tolerant APIs that don’t involve much code changes

Should fault tolerance be provided as a library?

< 9 >

OPEN CHALLENGES AND QUESTIONS

< 10 >

Roadmap of the talk

PUZZLE PIECES OF THE PROBLEM

Problem Description

• Why adding FT to MPI is difficult?

• Challenges & areas of concern

Lessons Learned

• Where do we go from here?

• Summary

Approaches

• Current solutions to the problem

• Proposals in the MPI forum

Experimental Evaluation

• Modeling & simulation

• Early evaluation results

1
 2

3
4

< 11 >

Resilient programming abstractions for MPI

POSSIBLE SOLUTIONS TO THE PROBLEM

1

2

3

4

ULFM: User level failure mitigation

Local shrinking recovery strategy

Reinit interface

Global non-shrinking recovery strategy

?

Fault tolerant libraries

e.g., Local Failure Local Recovery (LFLR)

Shrinking recovery: the available resources after a
failure are shrunk or reduced

Focus on process failures

!  Communication that involves a failed process would fail

Communicators can be revoked

!  Enables fault propagation

Communicators can be shrunk

!  Code must create new communicators with fewer processes

< 12 >

Current proposal for MPI 4.0

ULFM: USER LEVEL FAILURE MITIGATION

New error codes:

$$MPI_ERR_PROC_FAILED$

New MPI calls:

$$MPI_COMM_REVOKE$
$$MPI_COMM_SHRINK$
$$MPI_COMM_AGREE$
$$MPI_COMM_FAILURE_ACK$

Shrinking recovery strategy

Works well for master-slave codes
!  Only few processes need to know of a failure

Difficult to use in bulk synchronous codes
!  All processes need to know of failures (global recovery)
!  Codes must rollback to a previous checkpoint

Most codes cannot handle shrinking recovery
!  Cannot re-decompose problem in fewer processes
!  Requires load balancing

< 13 >

PROS AND CONS OF ULFM

Bulk synchronous

Everyone must
rollback

Master-slave

Some may
rollback

With ULFM, faults are “eventually” delivered to the application

Global recovery avoids this issue—all processes roll back to a known
safe state

< 14 >

DELAYED DETECTION IS DIFFICULT TO USE FOR ALGORITHMS
THAT USE NON-BLOCKING OPERATIONS

for$(i=0;$i$<$nsends;$++i)${
/*$computation$*/
MPI_Isend(...);

}

for$(i=0;$i$<$nrecvs;$++i)${
/*$computation$*/
MPI_Irecv(...);$

}

MPI_Waitall(...);

/*$computation$*/

MPI_Barrier(...);$

Data exchange patter

Failure?

Failure?

Failure?

Where in the loop do
we re-inject control?

Delayed
detection?

< 15 >

Global non-shrinking recovery strategy

REINIT INTERFACE

MPI_Init();,
$

MPI_Reinit();$
MPI_Error_handlers();$
$

for$(...)$
$$MPI_Isend();,
for$(...)$
$$MPI_Irecv();,
$

MPI_Waitall();,
MPI_Barrier();,
,

MPI_Finalize();,

MPI library performs:

" Failure detection

" Failure notification

"  Code specifies cleanup functions
"  Emulates exception handling

Error handler 1

Error handler 2

Error handler 3

Stack of error handlers

•  Difficult to clean up state of multithreaded code (OpenMP)

•  Won’t work if application’s initialization takes too much time
Disadvantages

•  Job is not killed

•  Faster checkpoint/restart
Advantages

Approach: use ULFM’s functionality to provide fault tolerance as a library

Example: Local Failure Local Recovery (LFLR)

< 16 >

FAULT TOLERANT LIBRARIES

Run

Run

Run

Stand by
 Join

Wait

Fault
 Run

Run

…"
Rank 0

Rank N

Rank N+1

Reference: Keita Teranishi and Michael A. Heroux. Toward Local Failure Local
Recovery Resilience Model using MPI-ULFM, EuroMPI/ASIA '14.

•  Applications cannot use other tools / libraries

•  Inherits any performance issues and/or bottlenecks from ULFM
Disadvantages

•  Handles fault tolerance transparently
Advantages

< 17 >

Resilient programming abstractions for MPI

POSSIBLE SOLUTIONS TO THE PROBLEM

1

2

3

4

ULFM: User level failure mitigation

Local shrinking recovery strategy

Reinit interface

Global non-shrinking recovery strategy

Fault tolerant libraries

e.g., Local Failure Local Recovery (LFLR)

Don’t integrate fault tolerance into MPI

Rely in Checkpoint/Restart

?

< 18 >

Roadmap of the talk

PUZZLE PIECES OF THE PROBLEM

Problem Description

• Why adding FT to MPI is difficult?

• Challenges & areas of concern

Lessons Learned

• Where do we go from here?

• Summary

Approaches

• Current solutions to the problem

• Proposals in the MPI forum

Experimental Evaluation

• Modeling & simulation

• Early evaluation results

1
 2

3
4

Scalable molecular dynamics application
!  Not a proxy / mini / benchmark code

Problem can be decomposed onto any number of
processes

Includes load balancing

Uses a few communicators

!  Simplifies implementing shrinking recovery
!  We have to shrink only one communicator

(MPI_COMM_SHRINK)

< 19 >

TESTBED APPLICATION: ddcMD

Open MPI 1.7, Sierra cluster at LLNL (InfiniBand)

< 20 >

ELIMINATING A PROCESS FROM A COMMUNICATOR TAKES
TOO MUCH TIME

0

2

4

6

8

10

12

0 50 100 150 200 250 300

Ti
m

e
(s

ec
)

MPI processes

Time to shrink MPI_COMM_WORLD when a process fails

Shrinking recovery only works when:
!  Application can balance loads quickly after failures
!  System experiences high failure rates
!  Application can re-decompose problem on fewer processes/nodes

Most codes/systems don’t have these capabilities

< 21 >

Most codes will use non-shrinking recovery at large scale

SHRINKING RECOVERY IS ONLY USEFUL IN SOME CASES

0.1

1

10

0" 10" 20" 30" 40"

Pe
na

lty
 fa

ct
or

Mean time between failures (hours)

Non-shrinking recovery

Shrinking recovery

Prototype Reinit in Open MPI

Tests on Cray XC30 system (BTL
network)

Applications:
!  Lattice Bolzmann transport code (LBMv3)
!  Molecular dynamics code (ddcMD)

< 22 >

Recovery time is reduced compared to traditional job restarts

REINIT PERFORMANCE MEASUREMENTS ARE PROMISING

Time to recover from a failure using
Reinit versus a standard job restart

With Reinit, we believe that data of recent checkpoints is likely
cached in the filesystem buffers since the job is not killed

0"
5"

10"
15"
20"
25"
30"
35"
40"
45"

64
 128
 200

T
im

e
(s

ec
)

MPI processes

Job restart

Using Reinit

Insight

< 23 >

Roadmap of the talk

PUZZLE PIECES OF THE PROBLEM

Problem Description

• Why adding FT to MPI is difficult?

• Challenges & areas of concern

Lessons Learned

• Where do we go from here?

• Summary

Approaches

• Current solutions to the problem

• Proposals in the MPI forum

Experimental Evaluation

• Modeling & simulation

• Early evaluation results

1
 2

3
4

#  The MPI community should evaluate carefully the pros and cons of
current fault-tolerant proposals

#  It is important to consider a broad range of applications

#  Pay special attention to legacy scalable codes (e.g., BSP)

#  Viewing the problem only from the system perspective doesn’t work

#  We must design interfaces after consulting with several users

< 24 >

SOME LESSONS LEARNED

< 25 >

How do we solve this problem?

FUTURE DIRECTIONS

…and only then we propose
modifications to the MPI standard

Evaluate multiple resilient
programming abstractions
(other than ULFM and Reinit)

1
Test models on a broad
range of applications

2
Evaluate not only performance,
but also programmability

3

< 26 >

Smart people that contribute to this effort

ACKNOWLEDGMENTS

Martin Schulz, LLNL

Todd Gamblin, LLNL

Kathryn Mohror, LLNL

David Richards, LLNL

Adam Moody, LLNL

Howard Pritchard, LANL

Bronis R. de Supinski, LLNL

Thank you!

< 27 >

< 28 >

It is hard to use ULFM in bulk synchronous codes

ULFM IS SUITABLE ONLY FOR A SUBSET APPLICATIONS

Shrinking Recovery

Local Recovery

Backward Recovery

Non-shrinking Recovery

Global Recovery

Forward Recovery

Bulk synchronous
 Master-slave

Applications

Reference: Ignacio Laguna, David F. Richards, Todd Gamblin, Martin Schulz, Bronis R. de Supinski, “Evaluating User-Level Fault
Tolerance for MPI Applications”, EuroMPI/ASIA, Kyoto, Japan, Sep 9-12, 2014.

Suitable for ULFM (easy to implement with few changes in the application)

Application can “naturally” support this model

ULFM

APP

ULFM

ULFM

ULFM APP

ULFM APP

ULFM APP

APP APP

APP

APP

< 29 >

In contrast, the focus of ULFM is forward recovery

REINIT SUPPORTS BACKWARD RECOVERY

Backward recovery
Attempts to restart the
application from a
previously saved state

Time

Failure

Forward recovery
Attempts to find a new state
from which the application can
continue.

ULFM
• Fix communicators and continue

• Attempt to “fix” MPI state

Reinit Interface
• Restart from a checkpoint

• Get “fresh” MPI state

