W'WJ
s

- - - -
Rk Pt

P
9
)
‘

Fault Tolerant Programming Abstractions and Failure
Recovery Models for MPI Applications

SR R Ve SameniE] (e ¢
Ilgnacio Laguna
Center for Applied Scientific Computing

‘ B Lawrence Livermore

D“‘
L]

National Laboratory

Salishan Conference on High-speed Computing, Apr 27-30, 2015

.

’
' 4
lllll.ll'll
N |
/- N
& - v
¢ "
N
& e e -
¥ & ¥ r5e e

.. o
by Lawrence Livermore National Laboratory under Contract

LLNL-PRES-670002. This work was performed under the auspices of the U.S. Department of Energ?/
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

MPI IS WIDELY USED, AND WILL CONTINUE TO BE...

We use MPI workloads to design future machines

next-generation (petaflops) supercomputers

O/ CORAL tier-1 benchmarks use MPI
I O CORAL is the recent DOE procurement to deliver
i g MPI is widely cited
T iy 4 6 60 Hits are returned by Google Scholar for
5% s 9 the term “message passing interface”

Many implementations are available
C/C++, Java, Matlab, Python, R, ...

MP1+X will remain a common programming model

< 2>

MOST NODE/PROCESS FAILURES SHOW UP IN MPI

MPI is the dominant “glue” for HPC applications

MPI

Node

MPI
¥y

MP]

Pr sS Process} [Proces

s| |Process

N

Examples:

* Application error (bug)

» Hardware error (soft error)

< 3>

MPI DOES NOT PROVIDE FAULT TOLERANCE

Failures are not an option in MP|

From the MPI standard:

» “ . after an error is detected, the state of MPl is
undefined”

= “MPI itself provides no mechanisms for handling
processor failures.”

MPI doesn’t provide guaranties about failure
detection and/or notifications

Resource manager kills the job (by default)

< 4 >

WHY TO INVEST IN FAULT TOLERANCE IN MPI?

No
resilience

MPI will Nice layer
abstractions
in the
standard

continue to to detect
be used failures

Solution?

< 5>

PUZZLE PIECES OF THE PROBLEM

Roadmap of the talk

1

Problem Description
« Why adding FT to MPI is difficult?
 Challenges & areas of concern

L essons Learned

* Where do we go from here?
* Summary

A

2

3

Approaches

* Current solutions to the problem
* Proposals in the MPI forum

Experimental Evaluation

* Modeling & simulation
* Early evaluation results

< 6 >

FIXING A FAILED MPI RANK TRANSPARENTLY IS HARD

The devil is on the details...

|deal fault-tolerance strategy:

Replace transparently a failed process

epmy mmmb®
EEEE L BEEE
EEEE ” EEES
EEEE SEES

Some implementation questions / considerations:

a How to bring a new MPI process up-to-date?
9 How to handle in-transit messages and operations”?

e Where to re-inject control in the application?

This is difficult to implement correctly and efficiently in MPI libraries

<7/ >

MOST CODES ASSUME NO ERROR CHECKING

Reasoning about error propagation in a complex code is hard

|deal world Real world

for (...)
err = MPI_Isend();

if (err) recover(); for (...)
for (...) MPI_Isend();

for (...)
MPI_Irecv();

err = MPI _Irecv();
if (err) recover();

err = MPI_Waitall(); MPI_Waitall();
if (err) recover(); MPI_Barrier();
err = MPI_Barrier();
if (err) recover();

MPI programs don’t check for errors
Fault detection that rely on error codes would be hard to use

Most codes will recover from failures via checkpoint/restart

< 8 >

OPEN CHALLENGES AND QUESTIONS

What failures to consider in the MPI standard?
= Node / process failures?
= Communication errors?
= Silent errors?

Should the application continue executing after a failure? How?
» Forward vs. backward recovery

Fault-tolerant APIs that don't involve much code changes

Should fault tolerance be provided as a library?

<9 >

PUZZLE PIECES OF THE PROBLEM
Roadmap of the talk

« Why adding FT to MPI is difficult?
 Challenges & areas of concern

1 Problem Description

Lessons Learned
* Where do we go from here?

* Summary

3

Approaches

* Current solutions to the problem
* Proposals in the MPI forum

Experimental Evaluation

* Modeling & simulation
* Early evaluation results

< 10 >

POSSIBLE SOLUTIONS TO THE PROBLEM

Resilient programming abstractions for MP!

Local shrinking recovery strategy

ULFM: User level failure mitigation wusversitvorennessee
INNOVATIVE
COMPUTING LABORATORY

Reinit interface
Global non-shrinking recovery strategy

Fault tolerant libraries
e.g., Local Failure Local Recovery (LFLR)

™

AAAAAAAAAAAAAAAA

Sandia
National
Laboratories

G
S

<11 >

ULFM: USER LEVEL FAILURE MITIGATION e UNIVERSITY0TENNESSEE
INNGVATIVE

Current proposal for MP1 4.0 COMPUTING LABORATORY

Shrinking recovery strategy

Shrinking recovery: the available resources after a
failure are shrunk or reduced

New error codes:
Focus on process failures MPI_ERR_PROC_FAILED
= Communication that involves a failed process would fail

New MPI calls:

Communicators can be revoked MPI_COMM_REVOKE

= Enables fault propagation MPI_COMM_SHRINK
MPI_COMM_AGREE

Communicators can be shrunk MPI_COMM_FAILURE_ACK

= Code must create new communicators with fewer processes

<12 >

PROS AND CONS OF ULFM

Works well for master-slave codes
= Only few processes need to know of a failure

Difficult to use in bulk synchronous codes

= All processes need to know of failures (global recovery)
= Codes must rollback to a previous checkpoint

Most codes cannot handle shrinking recovery

= Cannot re-decompose problem in fewer processes
= Requires load balancing

Master-slave

/

Some may

rollback

Bulk synchronous

amny’
-
T
EREE

Everyone must

rollback

<13 >

DELAYED DETECTION IS DIFFICULT TO USE FOR ALGORITHMS
THAT USE NON-BLOCKING OPERATIONS

Data exchange patter

for (i=@; i < nsends; ++i) {
/* computation */

MPI_Isend(...); < } Failure?

}

for (i=@; i < nrecvs; ++i) {
/* computation */

MPI Irecv(...); < fFailure?
¥
MPI Waitall(...); < }Failure?
/* computation */)
Delayed Where in the loop do
MPI_Barrier(...); ¢ detection? we re-inject control?

With ULFM, faults are “eventually” delivered to the application

Global recovery avoids this issue—all processes roll back to a known
safe state

< 14 >

REINIT INTERFACE ug A

Global non-shrinking recovery strategy ~~ headll T

MPI_Init(); MPI library performs:
)] i
MPT Reinit(); — Failure detection

MPI_Error_handlers();. Failure notification

for (...) \‘ » Code specifies cleanup functions
MPI_Isend(); * Emulates exception handling
for (...) ‘
MPI_TIrecv(); Stack of error handlers
MPI_Waitall(); Error handler 1

MPI_Barrier(); < Error handler 2

MPI_Finalize(); Error handler 3

 Job is not killed
* Faster checkpoint/restart

Advantages

« Difficult to clean up state of multithreaded code (OpenMP)

Disadvantages . Won't work if application’s initialization takes too much time

< 15 >

National
Laboratories

FAULT TOLERANT LIBRARIES @ Sandia

Approach: use ULFM’s functionality to provide fault tolerance as a library

Example: Local Failure Local Recovery (LFLR)

Rank 0 | Run |

| Run | Wait_| Run |

Rank N | Run I;Fault* Run |
Rank N+1 | Stand by | Join

Reference: Keita Teranishi and Michael A. Heroux. Toward Local Failure Local
Recovery Resilience Model using MPI-ULFM, EuroMPI/ASIA '14.

Advantages < Handles fault tolerance transparently

 Applications cannot use other tools / libraries

Disadvantages | Inherits any performance issues and/or bottlenecks from ULFM

< 16 >

POSSIBLE SOLUTIONS TO THE PROBLEM

Resilient programming abstractions for MP!

ULFM: User level failure mitigation wusversitvorennessee
Local shrinking recovery strategy INNOVATIVE

COMPUTING LABORATORY

Reinit interface _ By
Global non-shrinking recovery strategy L T
Fault tolerant libraries @)
e.g., Local Failure Local Recovery (LFLR) Laboratories

» Don't integrate fault tolerance into MPI

" Rely in Checkpoint/Restart

<17 >

PUZZLE PIECES OF THE PROBLEM

Roadmap of the talk

Approaches

* Current solutions to the problem
* Proposals in the MPI forum

2

« Why adding FT to MPI is difficult?
 Challenges & areas of concern

1 Problem Description

Experimental Evaluation
* Modeling & simulation

* Early evaluation results

Lessons Learned
* Where do we go from here?

* Summary

<18 >

TESTBED APPLICATION: ddcMD

Scalable molecular dynamics application
= Not a proxy / mini / benchmark code

Problem can be decomposed onto any number of
processes

Includes load balancing

Uses a few communicators
= Simplifies implementing shrinking recovery

= We have to shrink only one communicator
(MPI_COMM_SHRINK)

< 19 >

ELIMINATING A PROCESS FROM A COMMUNICATOR TAKES
TOO MUCH TIME

Time to shrink MPI_COMM_WORLD when a process fails
12

10 - >~

Time (sec)

o N B~ O ©©
|
\
1
\
=

0 50 100 150 200 250 300
MPI processes

Open MPI 1.7, Sierra cluster at LLNL (InfiniBand)

SHRINKING RECOVERY IS ONLY USEFUL IN SOME CASES

Most codes will use non-shrinking recovery at large scale

10
o Non-shrinking recovery
k:
2 1 1 \\ o
g Shrinking recovery
o
0.1 I I I I

0 10 20 30 40
Mean time between failures (hours)

Shrinking recovery only works when:
= Application can balance loads quickly after failures
= System experiences high failure rates
= Application can re-decompose problem on fewer processes/nodes

Most codes/systems don’t have these capabilities

<21 >

REINIT PERFORMANCE MEASUREMENTS ARE PROMISING

Recovery time is reduced compared to traditional job restarts

Time to recover from a failure using

Prototype Reinit in Open MP]

45

40

Tests on Cray XC30 system (BTL 35

< 30

network) §,,3 s

o 20

Applications: E 15

= Lattice Bolzmann transport code (LBMv3) - 12

» Molecular dynamics code (ddcMD) 0
Insight

Reinit versus a standard job restart

Job restart

W Using Reinit

I n

64

128 200

MPI processes

With Reinit, we believe that data of recent checkpoints is likely
cached in the filesystem buffers since the job is not killed

< 22 >

PUZZLE PIECES OF THE PROBLEM
Roadmap of the talk

Approaches

* Current solutions to the problem
* Proposals in the MPI forum

2

« Why adding FT to MPI is difficult?
 Challenges & areas of concern

1 Problem Description

3 Experimental Evaluation

* Modeling & simulation
* Early evaluation results

Lessons Learned
* Where do we go from here?

* Summary

< 23 >

SOME LESSONS LEARNED

Q The MPI community should evaluate carefully the pros and cons of
current fault-tolerant proposals

Q Itis important to consider a broad range of applications
[Pay special attention to legacy scalable codes (e.g., BSP)
[Viewing the problem only from the system perspective doesn’t work

0 We must design interfaces after consulting with several users

< 24 >

FUTURE DIRECTIONS

How do we solve this problem?

JHIR\

...and only then we propose
modifications to the MPI standard

3

Evaluate not only performance,
but also programmability

2

range of applications

1

Evaluate multiple resilient
programming abstractions
(other than ULFM and Reinit)

Test models on a broad

ACKNOWLEDGMENTS

Smart people that contribute to this effort

Martin Schulz, LLNL
David Richards, LLNL

Bronis R. de Supinski, LLNL

Kathryn Mohror, LLNL

S Todd Gamblin, LLNL

E Howard Pritchard, LANL

Adam Moody, LLNL

< 26 >

........ » S r 0
r‘,l" \O‘ » .\

.
' o4 ! .
& - »ol.lr\,. .!.Iv-«ot‘c. - .

_ | \
3 . . a1 .E P S o v - . — . e .
LA - > - » . ’ o
; ‘6.-..-.-.-..-..-

FaMaMm ravess il e A B T N e Ll | §
| | , , ‘ /
_ /. X BN | i \ \

« VAT,) L el 1 L

AR AR R] .-.---.---.

\ i .\

Isst 1 ¥

Thankyou'

ULFM IS SUITABLE ONLY FOR A SUBSET APPLICATIONS

It is hard to use ULFM in bulk synchronous codes

m Suitable for ULFM (easy to implement with few changes in the application)

Nzl Application can “naturally” support this model

Applications

€ Bulk synchronous Master-slave v/
Shrinking Recovery m APP___ ULFM
Non-shrinking Recovery APP
Local Recovery m
Global Recovery APP
Backward Recovery APP
Forward Recovery

Reference: Ignacio Laguna, David F. Richards, Todd Gamblin, Martin Schulz, Bronis R. de Supinski, “Evaluating User-Level Fault
Tolerance for MPI Applications”, EuroMPI/ASIA, Kyoto, Japan, Sep 9-12, 2014.

< 28 >

REINIT SUPPORTS BACKWARD RECOVERY

In contrast, the focus of ULFM is forward recovery

“

Backward recovery Forward recovery

Attempts to restart the . Attempts to find a new state
A @ Failure W A o
pplication from a rom which the application can

previously saved state continue.
// \\ ,’ \\
’ N / N

’ \ 4 N

/ N / N
/ \ / N

/ N /

Reinit Interface ULFM

*Restart from a checkpoint * Fix communicators and continue
*Get "fresh” MPI state * Attempt to “fix” MPI state

< 29 >

