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We use MPI workloads to design future machines 

MPI IS WIDELY USED, AND WILL CONTINUE TO BE… 


75% CORAL tier-1 benchmarks use MPI 
CORAL is the recent DOE procurement to deliver 
next-generation (petaflops) supercomputers 

46,600 Hits are returned by Google Scholar  for 
the term “message passing interface” 

Many implementations are available 
C/C++, Java, Matlab, Python,  R, … 

MPI is widely cited


MPI+X will remain a common programming model 
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MPI is the dominant “glue” for HPC applications 

MOST NODE/PROCESS FAILURES SHOW UP IN MPI
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Examples:

• Application error (bug)

• Hardware error (soft error)




From the MPI standard: 
! “... after an error is detected, the state of MPI is 

undefined” 
! “MPI itself provides no mechanisms for handling 

processor failures.” 

 
MPI doesn’t provide guaranties about failure 
detection and/or notifications 
 
Resource manager kills the job (by default) 
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Failures are not an option in MPI

MPI DOES NOT PROVIDE FAULT TOLERANCE
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WHY TO INVEST IN FAULT TOLERANCE IN MPI? 


MPI will 
continue to 

be used


Nice layer 
to detect 
failures


No 
resilience 

abstractions 
in the 

standard
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Solution?
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Roadmap of the talk

PUZZLE PIECES OF THE PROBLEM 


Problem Description

• Why adding FT to MPI is difficult?

• Challenges & areas of concern


Lessons Learned

• Where do we go from here?

• Summary 


Approaches

• Current solutions to the problem

• Proposals in the MPI forum


Experimental Evaluation

• Modeling & simulation

• Early evaluation results
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The devil is on the details…

FIXING A FAILED MPI RANK TRANSPARENTLY IS HARD 


Ideal fault-tolerance strategy:




Replace transparently a failed process 


This is difficult to implement correctly and efficiently in MPI libraries 


How to bring a new MPI process up-to-date? 


How to handle in-transit messages and operations? 


Where to re-inject control in the application?


1


2


3


Some implementation questions / considerations: 




MPI programs don’t check for errors 
Fault detection that rely on error codes would be hard to use 
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Reasoning about error propagation in a complex code is hard 

MOST CODES ASSUME NO ERROR CHECKING 


for$(...)$
$$err$=$MPI_Isend();,
$$if$(err)$recover();$
for$(...)$
$$err$=$MPI_Irecv();,
$$if$(err)$recover();$
$
err$=$MPI_Waitall();,
if$(err)$recover();$
err$=$MPI_Barrier();,
if$(err)$recover();$

Ideal world


for$(...)$
$$MPI_Isend();,
for$(...)$
$$MPI_Irecv();,
$
MPI_Waitall();,
MPI_Barrier();,

Real world


Most codes will recover from failures via checkpoint/restart 




What failures to consider in the MPI standard? 
!  Node / process failures? 
!  Communication errors? 
!  Silent errors? 

 
Should the application continue executing after a failure? How? 

!  Forward vs. backward recovery 

 
Fault-tolerant APIs that don’t involve much code changes 
 
Should fault tolerance be provided as a library? 
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OPEN CHALLENGES AND QUESTIONS 
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Resilient programming abstractions for MPI 

POSSIBLE SOLUTIONS TO THE PROBLEM 
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ULFM:  User level failure mitigation

Local shrinking recovery strategy


Reinit interface

Global non-shrinking recovery strategy


?


Fault tolerant libraries

e.g., Local Failure Local Recovery (LFLR)




Shrinking recovery: the available resources after a 
failure are shrunk or reduced 
 
Focus on process failures 

!  Communication that involves a failed process would fail 

 
Communicators can be revoked 

!  Enables fault propagation 

 
Communicators can be shrunk 

!  Code must create new communicators with fewer processes 
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Current proposal for MPI 4.0 

ULFM: USER LEVEL FAILURE MITIGATION 


New error codes:

$$MPI_ERR_PROC_FAILED$
 
New MPI calls:

$$MPI_COMM_REVOKE$
$$MPI_COMM_SHRINK$
$$MPI_COMM_AGREE$
$$MPI_COMM_FAILURE_ACK$

Shrinking recovery strategy




Works well for master-slave codes 
!  Only few processes need to know of a failure 
 

Difficult to use in bulk synchronous codes 
!  All processes need to know of failures (global recovery) 
!  Codes must rollback to a previous checkpoint 

Most codes cannot handle shrinking recovery 
!  Cannot re-decompose problem in fewer processes 
!  Requires load balancing 
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PROS AND CONS OF ULFM


Bulk synchronous


Everyone must 
rollback


Master-slave


Some may 
rollback




With ULFM, faults are “eventually” delivered to the application 
 

Global recovery avoids this issue—all processes roll back to a known 
safe state 
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DELAYED DETECTION IS DIFFICULT TO USE FOR ALGORITHMS 
THAT USE NON-BLOCKING OPERATIONS 


for$(i=0;$i$<$nsends;$++i)${
/*$computation$*/
MPI_Isend(...);

}

for$(i=0;$i$<$nrecvs;$++i)${
/*$computation$*/
MPI_Irecv(...);$

}

MPI_Waitall(...);

/*$computation$*/

MPI_Barrier(...);$

Data exchange patter


Failure?


Failure?


Failure?


Where in the loop do 
we re-inject control?


Delayed 
detection?
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Global non-shrinking recovery strategy 




REINIT INTERFACE 


MPI_Init();,
$

MPI_Reinit();$
MPI_Error_handlers();$
$

for$(...)$
$$MPI_Isend();,
for$(...)$
$$MPI_Irecv();,
$

MPI_Waitall();,
MPI_Barrier();,
,

MPI_Finalize();,

MPI library performs:

" Failure detection

" Failure notification


"  Code specifies cleanup functions 
"  Emulates exception handling 

Error handler 1 

Error handler 2 

Error handler 3 

Stack of error handlers


•  Difficult to clean up state of multithreaded code (OpenMP)

•  Won’t work if application’s initialization takes too much time 
Disadvantages 

•  Job is not killed

•  Faster checkpoint/restart
Advantages 



Approach: use ULFM’s functionality to provide fault tolerance as a library 
 

Example:  Local Failure Local Recovery (LFLR) 
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FAULT TOLERANT LIBRARIES 
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Fault
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Rank 0


Rank N 
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Reference:  Keita Teranishi and Michael A. Heroux. Toward Local Failure Local 
Recovery Resilience Model using MPI-ULFM, EuroMPI/ASIA '14.


•  Applications cannot use other tools / libraries 

•  Inherits any performance issues and/or bottlenecks from ULFM 
Disadvantages 

•  Handles fault tolerance transparently 
Advantages 
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Resilient programming abstractions for MPI 

POSSIBLE SOLUTIONS TO THE PROBLEM 
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ULFM:  User level failure mitigation

Local shrinking recovery strategy


Reinit interface

Global non-shrinking recovery strategy


Fault tolerant libraries

e.g., Local Failure Local Recovery (LFLR)


Don’t integrate fault tolerance into MPI

Rely in Checkpoint/Restart


?
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Scalable molecular dynamics application 
!  Not a proxy / mini / benchmark code 

 
Problem can be decomposed onto any number of 
processes 
 
Includes load balancing 
 
Uses a few communicators 

!  Simplifies implementing shrinking recovery 
!  We have to shrink only one communicator 

( MPI_COMM_SHRINK) 
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TESTBED APPLICATION:  ddcMD




Open MPI 1.7,  Sierra cluster at LLNL (InfiniBand) 
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ELIMINATING A PROCESS FROM A COMMUNICATOR TAKES 
TOO MUCH TIME
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Shrinking recovery only works when: 
!  Application can balance loads quickly after failures 
!  System experiences high failure rates 
!  Application can re-decompose problem on fewer processes/nodes 
 

Most codes/systems don’t have these capabilities 
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Most codes will use non-shrinking recovery at large scale 

SHRINKING RECOVERY IS ONLY USEFUL IN SOME CASES 
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Prototype Reinit in Open MPI 
 

Tests on Cray XC30 system (BTL 
network) 
 

Applications: 
!  Lattice Bolzmann transport code (LBMv3) 
!  Molecular dynamics code (ddcMD) 
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Recovery time is reduced compared to traditional job restarts 

REINIT PERFORMANCE MEASUREMENTS ARE PROMISING 


Time to recover from a failure using 
Reinit versus a standard job restart


With Reinit, we believe that data of recent checkpoints is likely 
cached in the filesystem buffers since the job is not killed 
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#  The MPI community should evaluate carefully the pros and cons of 
current fault-tolerant proposals 

#  It is important to consider a broad range of applications 

#  Pay special attention to legacy scalable codes (e.g., BSP) 

#  Viewing the problem only from the system perspective doesn’t work 

#  We must design interfaces after consulting with several users 
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SOME LESSONS LEARNED
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How do we solve this problem? 

FUTURE DIRECTIONS


…and only then we propose 
modifications to the MPI standard 


Evaluate multiple resilient 
programming abstractions 
(other than ULFM and Reinit)


1 
Test models on a broad 
range of applications


2 
Evaluate not only performance, 
but also programmability


3 
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It is hard to use ULFM in bulk synchronous codes 

ULFM IS SUITABLE ONLY FOR A SUBSET APPLICATIONS 


Shrinking Recovery


Local Recovery


Backward Recovery


Non-shrinking Recovery


Global Recovery


Forward Recovery


Bulk synchronous
 Master-slave

Applications 

Reference: Ignacio Laguna, David F. Richards, Todd Gamblin, Martin Schulz, Bronis R. de Supinski, “Evaluating User-Level Fault 
Tolerance for MPI Applications”, EuroMPI/ASIA, Kyoto, Japan, Sep 9-12, 2014.  


Suitable for ULFM (easy to implement with few changes in the application) 


Application can “naturally” support this model
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In contrast, the focus of ULFM is forward recovery 

REINIT SUPPORTS BACKWARD RECOVERY 


Backward recovery 
Attempts to restart the 
application from a 
previously saved state


Time 

Failure


Forward recovery 
Attempts to find a new state 
from which the application can 
continue.


ULFM 
• Fix communicators and continue 

• Attempt to “fix” MPI state


Reinit Interface 
• Restart from a checkpoint

• Get “fresh” MPI state



