
Error and fault abstractions

Mattan Erez

UT Austin



•Who should care about faults and errors?



•Ideally, only system cares about masked faults?

– Assuming application bugs are not called faults

– Assuming system reporting for analysis

– Assuming automatic rebalancing when needed



•What is the cost of masking faults?

– Many faults masked naturally

– Many faults are not



•Error correction requires error detection

– Both aren’t free

– But, many errors masked by algorithm/application



•Which errors can be masked / detected cheaply?

– Application dependent

– How do we find out?



•Application or system error models?



•System models are hard

– Bottom up

– Large space

– Input dependent

– Approximations not really known



•Quick(ish) way to search the error space

– Multi-mode simulation

– Skip over detectable errors

– Tool to be released
•Uses only public tools



•Requirement 1:

• What is the result of an injection experiment?

– Automatic correctness check 

– Check has to be believable

– Check should be fast



•Requirement 2:

• Abstraction for detectable / masked

• abstractions for error patterns

– Magnitude of noise terms?

– Requirements on error rates?



•Application-level models needed



•Another example? 
Racy code with occasional stale data

– F. Niu et al., “Hogwild”, NIPS’11
Racy Parallel Stochastic Gradient Decent



•What do we do with masked errors?

– What you can’t measure …



•Applications and system must 
coordinate error handling

– (Standard) abstractions needed
•That make sense to both system and algorithm

– End-to-end checkable benchmarks needed
•With multiple scales, times, and inputs

• Ideally with methodology for interpreting results


